26 resultados para Stress Crack resistance

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

80.00% 80.00%

Publicador:

Resumo:

An yttrium aluminum (YAl2) intermetallic compound ingot was prepared in an induction furnace under vacuum. The microstructure of YAl2 ingot was characterized by optical microscopy, scanning electron microscopy, and X-ray diffraction. The load bearing response of YAl2 intermetallic was investigated and compared with SiC ceramic by indentation combined with optical microscopy and scanning electron microscopy. Additionally, the tensile properties of the Mg–Li matrix composites reinforced with ultrafine YAl2 particles fabricated by planet ball milling were tested. The results show that the intermetallic compound ingot in this experiment is composed of a main face-centered-cubic structure YAl2 phase, a small amount of YAl phase, and minor Y and Al-rich phases. YAl2 intermetallic compound has excellent stability and shows better capability in crack resistance than SiC ceramic. The YAl2 intermetallic compound has better deformation compatibility with the Mg–14Li–3Al matrix than SiC reinforcement with the matrix, which leads to the superior resistance to crack for YAl2p/Mg–14Li–3Al composite compared to SiCp/Mg–14Li–3Al composite.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has become clear over the last 15-20 years that the immediate effect of a wide range of environmental stresses, and of infection, on vascular plants is to increase the formation of reactive oxygen species (ROS) and to impose oxidative stress on the cells. Since 1994, sufficient examples of similar responses in a broad range of marine macroalgae have been described to show that reactive oxygen metabolism also underlies the mechanisms by which seaweeds respond (and become resistant) to stress and infection. Desiccation, freezing, low temperatures, high light, ultraviolet radiation, and heavy metals all tend to result in a gradual and continued buildup of ROS because photosynthesis is inhibited and excess energy results in the formation of singlet oxygen. The response to other stresses (infection or oligosaccharides which signal that infection is occurring, mechanical stress, hyperosmotic shock) is quite different-a more rapid and intense, but short-lived production of ROS, described as an

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a new approach for extracting stress intensity factors (SIFs) by the extended element-free Galerkin method, through a crack closure integral (CCI) scheme, is proposed. The CCI calculation is used in conjunction with a local smoothing technique to improve the accuracy of the computed SIFs in a number of case studies of linear elastic fracture mechanics. The cases involve problems of mixed-mode, curved crack and thermo-mechanical loading. The SIFs by CCI, displacement and stress methods are compared with those based on the M-integral technique reported in the literature. The proposed CCI method involves very simple relations, and still gives good accuracy. The convergence of the results is also examined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, the susceptibility to stress corrosion cracking (SCC) of laser-welded NiTi wires in Hanks’ solution at 37.5 °C was studied by the slow strain-rate test (SSRT) at open-circuit potential and at different applied anodic potentials. The weldment shows high susceptibility to SCC when the applied potential is near to the pitting potential of the heat-affected zone (HAZ). The pits formed in the HAZ become sites of crack initiation when stress is applied, and cracks propagate in an intergranular mode under the combined effect of corrosion and stress. In contrast, the base-metal is immune to SCC under similar conditions. The increase in susceptibility to SCC in the weldment could be attributed to the poor corrosion resistance in the coarse-grained HAZ.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Communication of antibiotic resistance among bacteria via small molecules is implicated in transient reduction of bacterial susceptibility to antibiotics, which could lead to therapeutic failures aggravating the problem of antibiotic resistance. Released putrescine from the extremely antibiotic resistant bacterium Burkholderia cenocepacia protects less resistant cells from different species against the antimicrobial peptide polymyxin B (PmB). Exposure of B. cenocepacia to sub-lethal concentrations of PmB and other bactericidal antibiotics induce reactive oxygen species (ROS) production and expression of the oxidative stress response regulator OxyR. We evaluated whether putrescine alleviates antibiotic-induced oxidative stress. The accumulation of intracellular ROS such as superoxide ion and hydrogen peroxide was assessed fluorometrically with dichlorofluorescein diacetate, while the expression of OxyR and putrescine synthesis enzymes was determined in luciferase assays using chromosomal promoter-lux reporter system fusions. We evaluated wild type and isogenic deletion mutant strains with defects in putrescine biosynthesis after exposure to sub-lethal concentrations of PmB and other bactericidal antibiotics. Exogenous putrescine protected against oxidative stress induced by PmB and other antibiotics, whereas reduced putrescine synthesis resulted in increased ROS generation, and a parallel increased sensitivity to PmB. Of the 3 B. cenocepacia putrescine synthesizing enzymes, PmB induced only BCAL2641, an ornithine decarboxylase. This study exposes BCAL2641 as a critical component of the putrescine-mediated communication of antibiotic resistance, and as a plausible target for designing inhibitors that would block the communication of such resistance among different bacteria, ultimately reducing the window of therapeutic failure in treating bacterial infections.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new variant of the Element-Free Galerkin (EFG) method, that combines the diffraction method, to characterize the crack tip solution, and the Heaviside enrichment function for representing discontinuity due to a crack, has been used to model crack propagation through non-homogenous materials. In the case of interface crack propagation, the kink angle is predicted by applying the maximum tangential principal stress (MTPS) criterion in conjunction with consideration of the energy release rate (ERR). The MTPS criterion is applied to the crack tip stress field described by both the stress intensity factor (SIF) and the T-stress, which are extracted using the interaction integral method. The proposed EFG method has been developed and applied for 2D case studies involving a crack in an orthotropic material, crack along an interface and a crack terminating at a bi-material interface, under mechanical or thermal loading; this is done to demonstrate the advantages and efficiency of the proposed methodology. The computed SIFs, T-stress and the predicted interface crack kink angles are compared with existing results in the literature and are found to be in good agreement. An example of crack growth through a particle-reinforced composite materials, which may involve crack meandering around the particle, is reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many degenerative diseases are associated with increased oxidative stress. Creatine has the potential to act as an indirect and direct antioxidant; however, limited data exist to evaluate the antioxidant capabdities of creatine supplementation within in vivo human systems. This study aimed to investigate the effects of oral creatine supplementation on markers of oxidative stress and antioxidant defenses following exhaustive cycling exercise. Following preliminary testing and two additional familiarization sessions, 18 active males repeated two exhaustive incremental cycling trials (T1 and T2) separated by exactly 7 days. The subjects were assigned, in a double-blind manner, to receive either 20 g of creatine (Cr) or a placebo (P) for the 5 days preceding T2. Breath-by-breath respiratory data and heart rate were continually recorded throughout the exercise protocol and blood samples were obtained at rest (preexercise), at the end of exercise (postexercise), and the day following exercise (post24 h). Serum hypdroperoxide concentrations were elevated at postexercise by 17 +/- 5% above preexercise values (p = 0.030). However, supplementation did not influence lipid peroxidation (serum hypdroperoxide concentrations), resistance of low density lipoprotein to oxidative stress (t(1/2max) LDL oxidation) and plasma concentrations of non-enzymatic antioxidants (retinol, alpha-carotene, beta-carotene, alpha-tocopherol, gamma-tocopherol, lycopene and vitamin Q. Heart rate and oxygen uptake responses to exercise were not affected by supplementation. These findings suggest that short-term creatine supplementation does not enhance non-enzymatic antioxidant defence or protect against lipid peroxidation induced by exhaustive cycling in healthy males.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aims

Public health campaigns recommend increased fruit and vegetable (FV) consumption as an effective means of cardiovascular risk reduction. During an 8 week randomised control trial among hypertensive volunteers, we noted significant improvements in endothelium-dependent vasodilatation with increasing FV consumption. Circulating indices of inflammation, endothelial activation and insulin resistance are often employed as alternative surrogates for systemic arterial health. The responses of several such biomarkers to our previously described FV intervention are reported here.
Methods and results

Hypertensive volunteers were recruited from medical outpatient clinics. After a common 4 week run-in period during which FV consumption was limited to 1 portion per day, participants were randomised to 1, 3 or 6 portions daily for 8 weeks. Venous blood samples for biomarker analyses were collected during the pre and post-intervention vascular assessments. A total of 117 volunteers completed the 12 week study. Intervention-related changes in circulating levels of high sensitivity C-reactive protein (hsCRP), soluble intracellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), von Willebrand factor (vWF) and plasminogen activator inhibitor-1 (PAI-1) did not differ significantly between FV groups. Similarly, there were no significant between group differences of change in homeostasis model assessment (HOMA) scores.
Conclusions

Despite mediating a significant improvement in acetylcholine induced vasodilatation, increased FV consumption did not affect a calculated measure of insulin resistance or concentrations of the circulating biomarkers measured during this study. Functional indices of arterial health such as endothelium-dependent vasomotion are likely to provide more informative cardiovascular end-points during short-term dietary intervention trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The marine oligotrophic ultramicrobacterium Sphingomonas alaskensis RB2256 has a physiology that is distinctly different from that of typical copiotrophic marine bacteria, such as Vibrio angustum S14. This includes a high level of inherent stress resistance and the absence of starvation-induced stress resistance to hydrogen peroxide. In addition to periods of starvation in the ocean, slow nutrient-limited growth is likely to be encountered by oligotrophic bacteria for substantial periods of time. In this study we examined the effects of growth rate on the resistance of S. alaskensis RB2256 to hydrogen peroxide under carbon or nitrogen limitation conditions in nutrient-limited chemostats. Glucose-limited cultures of S. alaskensis RB2256 at a specific growth rate of 0.02 to 0.13 h(-1) exhibited 10,000-fold-greater viability following 60 min of exposure to 25 mM hydrogen peroxide than tells growing at a rate of 0.14 h(-1) or higher. Growth rate control of stress resistance was found to be specific to carbon and energy limitation in this organism. In contrast, V. angustum S14 did not exhibit growth rate-dependent stress resistance. The dramatic switch in stress resistance that was observed under carbon and energy limitation conditions has not been described previously in bacteria and thus may be a characteristic of the oligotrophic ultramicrobacterium, Catalase activity varied marginally and did not correlate with the growth rate, indicating that hydrogen peroxide breakdown was not the primary mechanism of resistance. More than 1,000 spots were resolved on silver-stained protein gels for cultures growing at rates of 0.026, 0.076, and 0.18 h(-1). Twelve protein spots had intensities that varied by more than twofold between growth rates and hence are likely to be important for growth rate-dependent stress resistance. These studies demonstrated the crucial role that nutrient limitation plays in the physiology of S. alaskensis RB2256, especially under oxidative stress conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Residual stress due to shrinkage of polymethylmethacrylate bone cement after polymerisation is possibly one factor capable of initiating cracks in the mantle of cemented hip replacements. No relationship between residual stress and observed cracking of cement has yet been demonstrated. To investigate if any relationship exists, a physical model has been developed which allows direct observation of damage in the cement layer on the femoral side of total hip replacement. The model contains medial and lateral cement layers between a bony surface and a metal stem; the tubular nature of the cement mantle is ignored. Five specimens were prepared and examined for cracking using manual tracing of stained cracks, observed by transmission microscopy: cracks were located and measured using image analysis. A mathematical approach for the prediction of residual stress due to shrinkage was developed which uses the thermal history of the material to predict when stress-locking occurs, and estimates subsequent thermal stress. The residual stress distribution of the cement layer in the physical model was then calculated using finite element analysis. Results show maximum tensile stresses normal to the observed crack directions, suggesting a link between residual stress and preload cracking. The residual stress predicted depends strongly on the definition of the reference temperature for stress-locking. The highest residual stresses (4-7 MPa) are predicted for shrinkage from maximum temperature, in this case, magnitudes are sufficiently high to initiate cracks when the influence of stress raisers such as pores or interdigitation at the bone/cement interface are taken into account (up to 24 MPa when calculating stress around a pore according to the method of Harrigan and Harris (J. Biomech. 24(11) (1991) 1047-1058)). We conclude that the damage accumulation failure scenario begins before weight-bearing due to cracking induced by residual stress around pores or stress raisers. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Burkholderia cepacia complex comprises groups of genomovars (genotypically distinct strains with very similar phenotypes) that have emerged as important opportunistic pathogens in cystic fibrosis (CF) patients. The inflammatory response against bacteria in the airways of CF individuals is dominated by polymorphonuclear cells and involves the generation of oxidative stress, which leads to further inflammation and tissue damage. Bacterial catalase, catalase-peroxidase and superoxide dismutase activities may contribute to the survival of B. cepacia following exposure to reactive oxygen metabolites generated by host cells in response to infection. In the present study the authors investigated the production of catalase, peroxidase and SOD by isolates belonging to various genomovars of the B. cepacia complex. Production of both catalase and SOD was maximal during late stationary phase in almost all isolates examined. Native PAGE identified 13 catalase electrophoretotypes and two SOD electrophoretotypes (corresponding to an Fe-SOD class) in strains belonging to the six genomovars of the B. cepacia complex. Seven out of 11 strains displaying high-level survival after H(2)O(2) treatment in vitro had a bifunctional catalase/peroxidase, and included all the genomovar III strains examined. These isolates represent most of the epidemic isolates that are often associated with the cepacia syndrome. The majority of the isolates from all the genomovars were resistant to extracellular O(-)(2), while resistance to intracellularly generated O(-)(2)was highly variable and could not be correlated with the detected levels of SOD activity. Altogether the results suggest that resistance to toxic oxygen metabolites from extracellular sources may be a factor involved in the persistence of B. cepacia in the airways of CF individuals.