10 resultados para Squares, Tables of.
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Raman spectroscopy has been used to predict the abundance of the FA in clarified butterfat that was obtained from dairy cows fed a range of levels of rapeseed oil in their diet. Partial least squares regression of the Raman spectra against FA compositions obtained by GC showed good prediction for the five major (abundance >5%) FA with R-2=0.74-0.92 and a root mean SE of prediction (RMSEP) that was 5-7% of the mean. In general, the prediction accuracy fell with decreasing abundance in the sample, but the RMSEP was 1.25%. The Raman method has the best prediction ability for unsaturated FA (R-2=0.85-0.92), and in particular trans unsaturated FA (best-predicted FA was 18:1 tDelta9). This enhancement was attributed to the isolation of the unsaturated modes from the saturated modes and the significantly higher spectral response of unsaturated bonds compared with saturated bonds. Raman spectra of the melted butter samples could also be used to predict bulk parameters calculated from standard analyzes, such as iodine value (R-2=0.80) and solid fat content at low temperature (R-2=0.87). For solid fat contents determined at higher temperatures, the prediction ability was significantly reduced (R-2=0.42), and this decrease in performance was attributed to the smaller range of values in solid fat content at the higher temperatures. Finally, although the prediction errors for the abundances of each of the FA in a given sample are much larger with Raman than with full GC analysis, the accuracy is acceptably high for quality control applications. This, combined with the fact that Raman spectra can be obtained with no sample preparation and with 60-s data collection times, means that high-throughput, on-line Raman analysis of butter samples should be possible.
Resumo:
We here analyse the observational SO and CS data presented in Nilsson ct al. (2000). The SO/CS integrated intensity ratio maps are presented for 19 molecular clouds, together with tables of relevant ratios at strategic positions, where we have also observed (SO)-S-34 and/or (CS)-S-34. The SO/CS abundance ratio as calculated from an LTE analysis is highly varying within and between the sources. Our isotopomer observations and Monte Carlo simulations verify that this is not an artifact due to optical depth problems. The variation of the maximum SO/CS abundance ratio between the clouds is 0.2-7. The largest variations within a cloud are found for the most nearby objects, possibly indicating resolution effects. We have also performed time dependent chemical simulations. We compare the simulations with our observed SO/CS abundance ratios and suggest a varying oxygen to carbon initial abundance, differing temporal evolution, density differences and X-ray sources associated with young stellar objects as possible explanations to the variations. In particular, the observed variation of the maximum SO/CS abundance ratio between the clouds can be explained by using initial O/C+ abundance ratios in the range 1.3-2.5. We finally derive a relationship between the SO/CS and O-2/CO abundance ratios, which may be used as a guide to find the most promising interstellar O-2 search targets.
Resumo:
We have surveyed the frequency band 218.30-263.55 GHz toward the core positions N and M and the quiescent cloud position NW in the Sgr B2 molecular cloud using the Swedish-ESO Submillimetre Telescope. In total 1730, 660, and 110 lines were detected in N, M, and NW, respectively, and 42 different molecular species were identified. The number of unidentified lines are 337, 51, and eight. Toward the N source, spectral line emission constitutes 22% of the total detected flux in the observed band, and complex organic molecules are the main contributors. Toward M, 14% of the broadband flux is caused by lines, and SO2 is here the dominant source of emission. NW is relatively poor in spectral lines and continuum. In this paper we present the spectra together with tables of suggested line identifications.
Resumo:
Many of the most interesting questions ecologists ask lead to analyses of spatial data. Yet, perhaps confused by the large number of statistical models and fitting methods available, many ecologists seem to believe this is best left to specialists. Here, we describe the issues that need consideration when analysing spatial data and illustrate these using simulation studies. Our comparative analysis involves using methods including generalized least squares, spatial filters, wavelet revised models, conditional autoregressive models and generalized additive mixed models to estimate regression coefficients from synthetic but realistic data sets, including some which violate standard regression assumptions. We assess the performance of each method using two measures and using statistical error rates for model selection. Methods that performed well included generalized least squares family of models and a Bayesian implementation of the conditional auto-regressive model. Ordinary least squares also performed adequately in the absence of model selection, but had poorly controlled Type I error rates and so did not show the improvements in performance under model selection when using the above methods. Removing large-scale spatial trends in the response led to poor performance. These are empirical results; hence extrapolation of these findings to other situations should be performed cautiously. Nevertheless, our simulation-based approach provides much stronger evidence for comparative analysis than assessments based on single or small numbers of data sets, and should be considered a necessary foundation for statements of this type in future.
Resumo:
The characterization of thermocouple sensors for temperature measurement in variable flow environments is a challenging problem. In this paper, novel difference equation-based algorithms are presented that allow in situ characterization of temperature measurement probes consisting of two-thermocouple sensors with differing time constants. Linear and non-linear least squares formulations of the characterization problem are introduced and compared in terms of their computational complexity, robustness to noise and statistical properties. With the aid of this analysis, least squares optimization procedures that yield unbiased estimates are identified. The main contribution of the paper is the development of a linear two-parameter generalized total least squares formulation of the sensor characterization problem. Monte-Carlo simulation results are used to support the analysis.
Resumo:
This paper theoretically analysis the recently proposed "Extended Partial Least Squares" (EPLS) algorithm. After pointing out some conceptual deficiencies, a revised algorithm is introduced that covers the middle ground between Partial Least Squares and Principal Component Analysis. It maximises a covariance criterion between a cause and an effect variable set (partial least squares) and allows a complete reconstruction of the recorded data (principal component analysis). The new and conceptually simpler EPLS algorithm has successfully been applied in detecting and diagnosing various fault conditions, where the original EPLS algorithm did only offer fault detection.
Resumo:
This paper presents a statistical model for the thermal behaviour of the line model based on lab tests and field measurements. This model is based on Partial Least Squares (PLS) multi regression and is used for the Dynamic Line Rating (DLR) in a wind intensive area. DLR provides extra capacity to the line, over the traditional seasonal static rating, which makes it possible to defer the need for reinforcement the existing network or building new lines. The proposed PLS model has a number of appealing features; the model is linear, so it is straightforward to use for predicting the line rating for future periods using the available weather forecast. Unlike the available physical models, the proposed model does not require any physical parameters of the line, which avoids the inaccuracies resulting from the errors and/or variations in these parameters. The developed model is compared with physical model, the Cigre model, and has shown very good accuracy in predicting the conductor temperature as well as in determining the line rating for future time periods.
Resumo:
Tropical peatlands represent globally important carbon sinks with a unique biodiversity and are currently threatened by climate change and human activities. It is now imperative that proxy methods are developed to understand the ecohydrological dynamics of these systems and for testing peatland development models. Testate amoebae have been used as environmental indicators in ecological and palaeoecological studies of peatlands, primarily in ombrotrophic Sphagnum-dominated peatlands in the mid- and high-latitudes. We present the first ecological analysis of testate amoebae in a tropical peatland, a nutrient-poor domed bog in western (Peruvian) Amazonia. Litter samples were collected from different hydrological microforms (hummock to pool) along a transect from the edge to the interior of the peatland. We recorded 47 taxa from 21 genera. The most common taxa are Cryptodifflugia oviformis, Euglypha rotunda type, Phryganella acropodia, Pseudodifflugia fulva type and Trinema lineare. One species found only in the southern hemisphere, Argynnia spicata, is present. Arcella spp., Centropyxis aculeata and Lesqueresia spiralis are indicators of pools containing standing water. Canonical correspondence analysis and non-metric multidimensional scaling illustrate that water table depth is a significant control on the distribution of testate amoebae, similar to the results from mid- and high-latitude peatlands. A transfer function model for water table based on weighted averaging partial least-squares (WAPLS) regression is presented and performs well under cross-validation (r 2apparent=0.76,RMSE=4.29;r2jack=0.68,RMSEP=5.18. The transfer function was applied to a 1-m peat core, and sample-specific reconstruction errors were generated using bootstrapping. The reconstruction generally suggests near-surface water tables over the last 3,000 years, with a shift to drier conditions at c. cal. 1218-1273 AD