5 resultados para SiO2 films

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is renewed interest in rare-earth elements and gadolinium in particular for a range of studies in coupling physics and applications. However, it is still apparent that synthesis impacts understanding of the intrinsic magnetic properties of thin gadolinium films, particularly for thicknesses of topicality. We report studies on 50nm thick nanogranular polycrystalline gadolinium thin films on SiO2 wafers that demonstrate single-crystal like behavior. The maximum in-plane saturation magnetization at 4K was found to be 4pMS4K = (2.61±0.26)T with a coercivity of HC4K = (160±5)Oe. A maximum Curie point of TC = (293±2)K was measured via zero-field-cooled - field-cooled magnetization measurements in close agreement with values reported in bulk single crystals. Our measurements revealed magnetic transitions at T1 = (12±2)K (as deposited samples) and T2 = (22±2)K (depositions on heated substrates) possibly arising from the interaction of paramagnetic fcc grains with their ferromagnetic hcp counterparts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

50nm thick nanogranular polycrystalline dysprosium thin films have been prepared via ultra-high vacuum DC sputtering on SiO2 and Si wafers. The maximum in-plane spontaneous magnetization at T = 4K was found to be µ0MS,4K(C) = (3.28±0.26)T for samples deposited on wafers heated to 350°C with a Neel point of TN(C) = (173±2)K and a ferromagnetic transition at TC(C) = (80±2)K, measured via zero-field-cooled – field-cooled magnetization measurements, close to single-crystal values. The slightly reduced magnetization is explained in the light of a metastable face-centered cubic crystal phase which occurred at the seed interface and granularity related effects, that are still noticeably influential despite an in-plane magnetic easy axis. As deposited samples showed reduced magnetization of µ0MS,4K(A) = (2.26±0.18)T, however their ferromagnetic transition shifted to a much higher temperature of TC(A) = (172±2)K and the antiferromagnetic phase was completely suppressed probably as a result of strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an effort to achieve large high-field magnetization and increased Curie temperature, polycrystalline DyRh, (DyRh)95X5 and (DyRh)85X15 (X = Fe, Co, Ni, Gd) thin films have been prepared via ultra-high vacuum DC co-sputtering on SiO2 and Si wafers, using Ta as seed and cap material. A body-centred cubic CsCl-like crystal formation (B2 phase) was achieved for DyRh around the equiatomic equilibrium, known from single crystals. The maximum in-plane spontaneous magnetization at T = 4K in fields of μ0H = 5T of was found to be μ0MS,4K = (1.50 ± 0.09)T with a ferromagnetic transition at TC = (5 ± 1)K and a coercivity of μ0HC,4K[D] = (0.010 ± 0.001)T (at T = 4K) for layers deposited on substrates heated to 350°C. Samples prepared at room temperature exhibited poorer texture, smaller grains and less B2-phase content; this did impact on the Curie temperature which was higher compared to those layers with best crystallisation; however the maximal magnetization stayed unaffected. Ferromagnetic coupling was observed in ternary alloys of DyRhGd and DyRhNi with an increased Curie temperature, larger initial permeability, and
high-field magnetization which was best for (DyRh)85Gd15 with μ0MS,4K[Gd15] = (2.10 ± 0.13)T. DyRhFe and DyRhCo showed antiparallel coupling of the spontaneous magnetic moments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we demonstrate that quasi self-standing Au nanorod arrays prepared with plasma polymerisation deposited SiO2 dielectric spacers support surface enhanced fluorescence (SEF) while maintaining high signal reproducibility. We show that it is possible to find a balance between enhanced radiative and non-radiative decay rates at which the fluorescent intensity is maximized. The SEF signal optimised with a 30 nm spacer layer thickness showed a 3.5-fold enhancement with a signal variance of <15% thereby keeping the integrity of the nanorod array. We also demonstrate the decreased importance of obtaining resonance conditions when localized surface plasmon resonance is positioned within the spectral region of Au interband transitions. Procedures for further increasing the SEF enhancement factor are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-dimensional metal nanoparticle arrays are normally constructed at liquid–oil interfaces by modifying the surfaces of the constituent nanoparticles so that they self-assemble. Here we present a general and facile new approach for promoting such interfacial assembly without any surface modification. The method use salts that have hydrophobic ions of opposite charge to the nanoparticles, which sit in the oil layer and thus reduce the Coulombic repulsion between the particles in the organic phase, allowing the particles to sit in close proximity to each other at the interface. The advantage of this method is that because it does not require the surface of the particles to be modified it allows nonmetallic particles including TiO2 and SiO2 to be assembled into dense interfacial layers using the same procedure as is used for metallic particles. This opens up a route to a new family of nanostructured functional materials.