78 resultados para SMALL NUCLEAR-RNA

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Key tenets of modern biology are the central place of protein in cell regulation and the flow of genetic information from DNA to RNA to protein. However, it is becoming increasingly apparent that genomes are much more complex than hitherto thought with remarkably complex regulatory systems. The notion that the fraction of the genome involved in coding protein is all that matters is increasingly being questioned as the roles of non-coding RNA (ncRNA) in cellular systems becomes recognised. The RNA world, including microRNA (miRNA), small inhibitory RNA (siRNA) and other RNA species, are now recognised as being crucial for the regulation of chromatin structure, gene expression, mRNA processing and splicing, mRNA stability and translational control. Furthermore such ncRNA systems may be perturbed in disease states and most notably in neoplasia, including in haematological malignancies. Here the burgeoning evidence for a role of miRNA in neoplasia is reviewed and the importance of understanding the RNA world emphasised. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hypoxic cancer cells are resistant to treatment, leading to the selection of cells with a more malignant phenotype. The expression of interleukin-8 (IL-8) plays an important role in the tumorigenesis and metastasis of solid tumors including prostate cancer. Recently, we detected elevated expression of IL-8 and IL-8 receptors in human prostate cancer tissue. The objective of the current study was to determine whether hypoxia increases IL-8 and IL-8 receptor expression in prostate cancer cells and whether this contributes to a survival advantage in hypoxic cells. IL-8, CXCR1 and CXCR2 messenger RNA (mRNA) expression in PC3 cells was upregulated in response to hypoxia in a time-dependent manner. Elevated IL-8 secretion following hypoxia was detected by enzyme-linked immunosorbent assay, while immunoblotting confirmed elevated receptor expression. Attenuation of hypoxia-inducible factor (HIF-1) and nuclear factor-kappaB (NF-kappaB) transcriptional activity using small interfering RNA (siRNA), a HIF-1 dominant-negative and pharmacological inhibitors, abrogated hypoxia-induced transcription of CXCR1 and CXCR2 in PC3 cells. Furthermore, chromatin-IP analysis demonstrated binding of HIF-1 and NF-kappaB to CXCR1. Finally, inhibition of IL-8 signaling potentiated etoposide-induced cell death in hypoxic PC3 cells. These results suggest that IL-8 signaling confers a survival advantage to hypoxic prostate cancer cells, and therefore, strategies to inhibit IL-8 signaling may sensitize hypoxic tumor cells to conventional treatments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Efficient transcription elongation from a chromatin template requires RNA polymerases (Pols) to negotiate nucleosomes. Our biochemical analyses demonstrate that RNA Pol I can transcribe through nucleosome templates and that this requires structural rearrangement of the nucleosomal core particle. The subunits of the histone chaperone FACT (facilitates chromatin transcription), SSRP1 and Spt16, co-purify and co-immunoprecipitate with mammalian Pol I complexes. In cells, SSRP1 is detectable at the rRNA gene repeats. Crucially, siRNA-mediated repression of FACT subunit expression in cells results in a significant reduction in 47S pre-rRNA levels, whereas synthesis of the first 40 nt of the rRNA is not affected, implying that FACT is important for Pol I transcription elongation through chromatin. FACT also associates with RNA Pol III complexes, is present at the chromatin of genes transcribed by Pol III and facilitates their transcription in cells. Our findings indicate that, beyond the established role in Pol II transcription, FACT has physiological functions in chromatin transcription by all three nuclear RNA Pols. Our data also imply that local chromatin dynamics influence transcription of the active rRNA genes by Pol I and of Pol III-transcribed genes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Inflammation and genetic instability are enabling characteristics of prostate carcinoma (PCa). Inactivation of the tumour suppressor gene phosphatase and tensin homolog (PTEN) is prevalent in early PCa. The relationship of PTEN deficiency to inflammatory signalling remains to be characterised.

Objective: To determine how loss of PTEN functionality modulates expression and efficacy of clinically relevant, proinflammatory chemokines in PCa.

Design, setting and participants: Experiments were performed in established cell-based PCa models, supported by pathologic analysis of chemokine expression in prostate tissue harvested from PTEN heterozygous (Pten(+/-)) mice harbouring inactivation of one PTEN allele.

Interventions: Small interfering RNA (siRNA)- or small hairpin RNA (shRNA)-directed strategies were used to repress PTEN expression and resultant interleukin-8 (CXCL8) signalling, determined under normal and hypoxic culture conditions.

Outcome measurements and statistical analysis: Changes in chemokine expression in PCa cells and tissue were analysed by real-time polymerase chain reaction (PCR), immunoblotting, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry; effects of chemokine signalling on cell function were assessed by cell cycle analysis, apoptosis, and survival assays.

Results and limitations: Transient (siRNA) or prolonged (shRNA) PTEN repression increased expression of CXCL8 and its receptors, chemokine (C-X-C motif) receptor (CXCR) 1 and CXCR2, in PCa cells. Hypoxia-induced increases in CXCL8, CXCR1, and CXCR2 expression were greater in magnitude and duration in PTEN-depleted cells. Autocrine CXCL8 signalling was more efficacious in PTEN-depleted cells, inducing hypoxia-inducible factor-1 (HIF-1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-?B) transcription and regulating genes involved in survival and angiogenesis. Increased expression of the orthologous chemokine KC was observed in regions displaying atypical cytologic features in Pten(+/-) murine prostate tissue relative to normal epithelium in wild-type PTEN (Pten(WT)) glands. Attenuation of CXCL8 signalling decreased viability of PCa cells harbouring partial or complete PTEN loss through promotion of G1 cell cycle arrest and apoptosis. The current absence of clinical validation is a limitation of the study.

Conclusions: PTEN loss induces a selective upregulation of CXCL8 signalling that sustains the growth and survival of PTEN-deficient prostate epithelium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the role of p53 and the signal transducer and activator of transcription 1 (STAT1) in regulating Fas-mediated apoptosis in response to chemotherapies used to treat colorectal cancer. We found that 5-fluorouracil (5-FU) and oxaliplatin only sensitized p53 wild-type (WT) colorectal cancer cell lines to Fas-mediated apoptosis. In contrast, irinotecan (CPT-11) and tomudex sensitized p53 WT, mutant, and null cells to Fas-mediated cell death. Furthermore, CPT-11 and tomudex, but not 5-FU or oxaliplatin, up-regulated Fas cell surface expression in a p53-independent manner. In addition, increased Fas cell surface expression in p53 mutant and null cell lines in response to CPT-11 and tomudex was accompanied by only a slight increase in total Fas mRNA and protein expression, suggesting that these agents trigger p53-independent trafficking of Fas to the plasma membrane. Treatment with CPT-11 or tomudex induced STAT1 phosphorylation (Ser727) in the p53-null HCT116 cell line but not the p53 WT cell line. Furthermore, STAT1-targeted small interfering RNA (siRNA) inhibited up-regulation of Fas cell surface expression in response to CPT-11 and tomudex in these cells. However, we found no evidence of altered Fas gene expression following siRNA-mediated down-regulation of STAT1 in drug-treated cells. This suggests that STAT1 regulates expression of gene(s) involved in cell surface trafficking of Fas in response to CPT-11 or tomudex. We conclude that CPT-11 and tomudex may be more effective than 5-FU and oxaliplatin in the treatment of p53 mutant colorectal cancer tumors by sensitizing them to Fas-mediated apoptosis in a STAT1-dependent manner.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The elevated levels of beta1,4-galactosyltransferase I (GalT I; EC 2.4.1.38) are detected in highly metastatic lung cancer PGBE1 cells compared with its less metastatic partner PGLH7 cells. Decreasing the GalT I surface expression by small interfering RNA or interfering with the surface of GalT I function by mutation inhibited cell adhesion on laminin, the invasive potential in vitro, and tyrosine phosphorylation of focal adhesion kinase. The mechanism by which GalT I activity is up-regulated in highly metastatic cells remains unclear. To investigate the regulation of GalT I expression, we cloned the 5'-region flanking the transcription start point of the GalT I gene (-1653 to +52). Cotransfection of the GalT I promoter/luciferase reporter and the Ets family protein E1AF expression plasmid increased the luciferase reporter activity in a dose-dependent manner. By deletion and mutation analyses, we identified an Ets-binding site between nucleotides -205 and -200 in the GalT I promoter that was critical for responsiveness to E1AF. It was identified that E1AF could bind to and activate the GalT I promoter by electrophoretic mobility shift assay in PGLH7 cells and COS1 cells. A stronger affinity of E1AF for DNA has contributed to the elevated expression of GalT I in PGBE1 cells. Stable transfection of the E1AF expression plasmid resulted in increased GalT I expression in PGLH7 cells, and stable transfectants migrated faster than control cells. Meanwhile, the content of the beta1,4-Gal branch on the cell surface was increased in stably transfected PGLH7 cells. GalT I expression can also be induced by epidermal growth factor and dominant active Ras, JNK1, and ERK1. These data suggest an essential role for E1AF in the activation of the human GalT I gene in highly metastatic lung cancer cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Perhaps the greatest barrier to development of the field of transmembrane drug delivery is that only a limited number of drugs are amenable to administration by this route. The highly lipophilic nature and barrier function of the uppermost layer of the skin, the stratum corneum, for example, restricts the permeation of hydrophilic, high molecular weight and charged compounds into the systemic circulation. Other membranes in the human body can also present significant barriers to drug permeation. In order to successfully deliver hydrophilic drugs, and macromolecular agents of interest, including peptides, DNA and small interfering RNA, many research groups and pharmaceutical companies Worldwide are focusing on the use of microporation methods and devices. Whilst there are a variety of microporation techniques, including the use of laser, thermal ablation, electroporation, radiofrequency, ultrasound, high pressure jets, and microneedle technology, they share the common goal of enhancing the permeability of a biological membrane through the creation of transient aqueous transport pathways of micron dimensions across that membrane. Once created, these micropores are orders of magnitude larger than molecular dimensions and, therefore, should readily permit the transport of hydrophilic macromolecules. Additionally, microporation devices also enable minimally-invasive sampling and monitoring of biological fluids. This review deals with the innovations relating to microporation-based methods and devices for drug delivery and minimally invasive monitoring, as disclosed in recent patent literature. © 2010 Bentham Science Publishers Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have previously shown that mice lacking the IL-12-specific receptor subunit ß2 (IL-12Rß2) develop more severe experimental autoimmune encephalomyelitis than wild-type (WT) mice. The mechanism underlying this phenomenon is not known; nor is it known whether deficiency of IL-12Rß2 impacts other autoimmune disorders similarly. In the present study we demonstrate that IL-12Rß2-/- mice develop earlier onset and more severe disease in the streptozotocin-induced model of diabetes, indicating predisposition of IL-12Rß2-deficient mice to autoimmune diseases. T cells from IL-12Rß2-/- mice exhibited significantly higher proliferative responses upon TCR stimulation. The numbers of naturally occurring CD25+CD4+ regulatory T cells (Tregs) in the thymus and spleen of IL-12Rß2-/- mice were comparable to those of WT mice. However, IL-12Rß2-/- mice exhibited a significantly reduced capacity to develop Tregs upon stimulation with TGF-ß, as shown by significantly lower numbers of CD25+CD4+ T cells that expressed Foxp3. Functionally, CD25+CD4+ Tregs derived from IL-12Rß2-/- mice were less efficient than those from WT mice in suppressing effector T cells. The role of IL-12Rß2 in the induction of Tregs was confirmed using small interfering RNA. These findings suggest that signaling via IL-12Rß2 regulates both the number and functional maturity of Treg cells, which indicates a novel mechanism underlying the regulation of autoimmune diseases by the IL-12 pathway. Copyright © 2008 by The American Association of Immunologists, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many promising therapeutic agents are limited by their inability to reach the systemic circulation, due to the excellent barrier properties of biological membranes, such as the stratum corneum (SC) of the skin or the sclera/cornea of the eye and others. The outermost layer of the skin, the SC, is the principal barrier to topically-applied medications. The intact SC thus provides the main barrier to exogenous substances, including drugs. Only drugs with very specific physicochemical properties (molecular weight <500 Da, adequate lipophilicity, and low melting point) can be successfully administered transdermally. Transdermal delivery of hydrophilic drugs and macromolecular agents of interest, including peptides, DNA, and small interfering RNA is problematic. Therefore, facilitation of drug penetration through the SC may involve by-pass or reversible disruption of SC molecular architecture. Microneedles (MNs), when used to puncture skin, will by-pass the SC and create transient aqueous transport pathways of micron dimensions and enhance the transdermal permeability. These micropores are orders of magnitude larger than molecular dimensions, and, therefore, should readily permit the transport of hydrophilic macromolecules. Various strategies have been employed by many research groups and pharmaceutical companies worldwide, for the fabrication of MNs. This review details various types of MNs, fabrication methods and, importantly, investigations of clinical safety of MN.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Erythropoietin (Epo), the major regulator of erythropoiesis, and its cognate receptor (EpoR) are also expressed in nonerythroid tissues, including tumors. Clinical studies have highlighted the potential adverse effects of erythropoiesis-stimulating agents when used to treat cancer-related anemia. We assessed the ability of EpoR to enhance tumor growth and invasiveness following Epo stimulation. A benign noninvasive rat mammary cell line, Rama 37, was used as a model system. Cell signaling and malignant cell behavior were compared between parental Rama 37 cells, which express few or no endogenous EpoRs, and a modified cell line stably transfected with human EpoR (Rama 37-28). The incubation of Rama 37-28 cells with pharmacologic levels of Epo led to the rapid and sustained increases in phosphorylation of signal transducers and activators of transcription 5, Akt, and extracellular signal-regulated kinase. The activation of these signaling pathways significantly increased invasion, migration, adhesion, and colony formation. The Epo-induced invasion capacity of Rama 37-28 cells was reduced by the small interfering RNA-mediated knockdown of EpoR mRNA levels and by inhibitors of the phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways with adhesion also reduced by Janus-activated kinase 2/signal transducers and activators of transcription 5 inhibition. These data show that Epo induces phenotypic changes in the behavior of breast cancer cell lines and establishes links between individual cell signaling pathways and the potential for cancer spread.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Respiratory syncytial virus (RSV) infection causes bronchiolitis and pneumonia in infants. RSV has a linear single-stranded RNA genome encoding 11 proteins, 2 of which are nonstructural (NS1 and NS2). RSV specifically downregulates STAT2 protein expression, thus enabling the virus to evade the host type I interferon response. Degradation of STAT2 requires proteasomal activity and is dependent on the expression of RSV NS1 and NS2 (NS1/2). Here we investigate whether RSV NS proteins can assemble ubiquitin ligase (E3) enzymes to target STAT2 to the proteasome. We demonstrate that NS1 contains elongin C and cullin 2 binding consensus sequences and can interact with elongin C and cullin 2 in vitro; therefore, NS1 has the potential to act as an E3 ligase. By knocking down expression of specific endogenous E3 ligase components using small interfering RNA, NS1/2, or RSV-induced STAT2, degradation is prevented. These results indicate that E3 ligase activity is crucial for the ability of RSV to degrade STAT2. These data may provide the basis for therapeutic intervention against RSV and/or logically designed live attenuated RSV vaccines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mammalian cells respond to nutrient deprivation by inhibiting energy consuming processes, such as proliferation and protein synthesis, and by stimulating catabolic processes, such as autophagy. p70 S6 kinase (S6K1) plays a central role during nutritional regulation of translation. S6K1 is activated by growth factors such as insulin, and by mammalian target of rapamycin (mTOR), which is itself regulated by amino acids. The Class IA phosphatidylinositol (PI) 3-kinase plays a well recognized role in the regulation of S6K1. We now present evidence that the Class III PI 3-kinase, hVps34, also regulates S6K1, and is a critical component of the nutrient sensing apparatus. Overexpression of hVps34 or the associated hVps15 kinase activates S6K1, and insulin stimulation of S6K1 is blocked by microinjection of inhibitory anti-hVps34 antibodies, overexpression of a FYVE domain construct that sequesters the hVps34 product PI(3) P, or small interfering RNA-mediated knock-down of hVps34. hVps34 is not part of the insulin input to S6K1, as it is not stimulated by insulin, and inhibition of hVps34 has no effect on phosphorylation of Akt or TSC2 in insulin-stimulated cells. However, hVps34 is inhibited by amino acid or glucose starvation, suggesting that it lies on the nutrient-regulated pathway to S6K1. Consistent with this, hVps34 is also inhibited by activation of the AMP-activated kinase, which inhibits mTOR/S6K1 in glucose-starved cells. hVps34 appears to lie upstream of mTOR, as small interfering RNA knock- down of hVps34 inhibits the phosphorylation of another mTOR substrate, eIF4E-binding protein-1 (4EBP1). Our data suggest that hVps34 is a nutrient-regulated lipid kinase that integrates amino acid and glucose inputs to mTOR and S6K1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims/hypothesis: Up-regulation of the receptor for AGEs (RAGE) and its ligands in diabetes has been observed in various tissues. Here, we sought to determine levels of RAGE and one of its most important ligands, S100B, in diabetic retina, and to investigate the regulatory role of S100B and RAGE in Müller glia.

Methods: Streptozotocin-diabetes was induced in Sprague-Dawley rats. RAGE, S100B and glial fibrillary acidic protein (GFAP) were detected in retinal cryosections. In parallel, the human retinal Müller cell line, MIO-M1, was maintained in normal glucose (5.5 mmol/l) or high glucose (25 mmol/l). RAGE knockdown was achieved using small interfering RNA (siRNA), while soluble RAGE was used as a competitive inhibitor of RAGE ligand binding. RAGE, S100B and cytokines were detected using quantitative RT-PCR, western blotting, cytokine protein arrays or ELISA. Activation of mitogen-activated protein kinase (MAPK) by RAGE was determined by western blotting.

Results: Compared with non-diabetic controls, RAGE and S100B were significantly elevated in the diabetic retina with apparent localisation in the Müller glia, occurring concomitantly with upregulation of GFAP. Exposure of MIO-M1 cells to high glucose induced increased production of RAGE and S100B. RAGE signalling via MAPK pathway was linked to cytokine production. Blockade of RAGE prevented cytokine responses induced by high glucose and S100B in Müller glia.

Conclusions/interpretation: Hyperglycaemia in vivo and in vitro exposure to high glucose induce upregulation of RAGE and its ligands, leading to RAGE signalling, which links to pro-inflammatory responses by retinal Müller glia. These data shed light on the potential clinical application of RAGE blockade to inhibit the progression of diabetic retinopathy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND & AIMS: C/EBP alpha (cebpa) is a putative tumor suppressor. However, initial results indicated that cebpa was up-regulated in a subset of human hepatocellular carcinomas (HCCs). The regulation and function of C/EBP alpha was investigated in HCC cell lines to clarify its role in liver carcinogenesis. METHODS: The regulation of C/EBP alpha expression was studied by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blotting, immunohistochemistry, methylation-specific PCR, and chromatin immunoprecipitation assays. C/EBP alpha expression was knocked-down by small interfering RNA or short hairpin RNA. Functional assays included colony formation, methylthiotetrazole, bromodeoxyuridine incorporation, and luciferase-reporter assays. RESULTS: Cebpa was up-regulated at least 2-fold in a subset (approximately 55%) of human HCCs compared with adjacent non tumor tissues. None of the up-regulated samples were positive for hepatitis C infection. The HCC cell lines Hep3B and Huh7 expressed high, PLC/PRF/5 intermediate, HepG2 and HCC-M low levels of C/EBP alpha, recapitulating the pattern of expression observed in HCCs. No mutations were detected in the CEBP alpha gene in HCCs and cell lines. C/EBP alpha was localized to the nucleus and functional in Hep3B and Huh7 cells; knocking-down its expression reduced target-gene expression, colony formation, and cell growth, associated with a decrease in cyclin A and CDK4 concentrations and E2F transcriptional activity. Epigenetic mechanisms including DNA methylation, and the binding of acetylated histone H3 to the CEBP alpha promoter-regulated cebpa expression in the HCC cells. CONCLUSIONS: C/EBP alpha is up-regulated in a subset of HCCs and has growth-promoting activities in HCC cells. Novel oncogenic mechanisms involving C/EBP alpha may be amenable to epigenetic regulation to improve treatment outcomes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ligand-induced activation of peroxisome proliferator-activated receptor gamma (PPAIR gamma) inhibits proliferation in cancer cells in vitro and in vivo; however, the downstream targets remain undefined. We report the identification of a peroxisome proliferator response element in the promoter region of the Na+/ H transporter gene NHE1, the overexpression of which has been associated with carcinogenesis. Exposure of breast cancer cells expressing high levels of PPAR gamma to its natural and synthetic agonists resulted in downregulation of NHE1 transcription as well as protein expression. Furthermore, the inhibitory effect of activated PPAR gamma on tumor colony-forming ability was abrogated on overexpression of NHE1, whereas small interfering RNA-mediated gene silencing of NHE1 significantly increased the sensitivity of cancer cells to growth-inhibitory stimuli. Finally, histopathologic analysis of breast cancer biopsies obtained from patients with type II diabetes treated with the synthetic agonist rosiglitazone showed significant repression of NHE1 in the tumor tissue. These data provide evidence for tumor-selective downregulation of NHE1 by activated PPAR gamma in vitro and in pathologic specimens from breast cancer patients and could have potential implications for the judicious use of low doses of PPAR gamma ligands in combination chemotherapy regimens for an effective therapeutic response. [Cancer Res 2009;69(22):8636-44]