125 resultados para Rubisco small subunit gene ( rbcS) Promoter
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
We cloned and characterized a 3.3-kb fragment containing the 5'-regulatory region of the human myostatin gene. The promoter sequence contains putative muscle growth response elements for glucocorticoid, androgen, thyroid hormone, myogenic differentiation factor 1, myocyte enhancer factor 2, peroxisome proliferator-activated receptor, and nuclear factor-kappaB. To identify sites important for myostatin's gene transcription and regulation, eight deletion constructs were placed in C(2)C(12) and L6 skeletal muscle cells. Transcriptional activity of the constructs was found to be significantly higher in myotubes compared with that of myoblasts. To investigate whether glucocorticoids regulate myostatin gene expression, we incubated both cell lines with dexamethasone. On both occasions, dexamethasone dose dependently increased both the promoter's transcriptional activity and the endogenous myostatin expression. The effects of dexamethasone were blocked when the cells were coincubated with the glucocorticoid receptor antagonist RU-486. These findings suggest that glucocorticoids upregulate myostatin expression by inducing gene transcription, possibly through a glucocorticoid receptor-mediated pathway. We speculate that glucocorticoid-associated muscle atrophy might be due in part to the upregulation of myostatin expression.
Resumo:
Investigations of queen, worker and male bumble bees (Bombus terrestris) showed that all individuals became infected with Nosema bombi. Infections were found in Malpighian tubules, thorax muscles, fat body tissue and nerve tissue, including the brain. Ultrastructural studies revealed thin walled emptied spores in host cell cytoplasm interpreted as autoinfective spores, besides normal spores (environmental spores) intended for parasite transmission between hosts. The nucleotide sequence of the gene coding for the small subunit rRNA (SSU-rRNA) from Microsporidia isolated from B. terrestris, B. lucorum, and B. hortorum were identical, providing evidence that N. bombi infects multiple hosts. The sequence presented here (GenBank Accession no AY008373) is different from an earlier submission to GenBank (Accession no U26158) of a partial sequence of the same gene based on material collected from B. terrestris. It still remains to be investigated if there is species diversity among Microsporidia found in bumble bees.
Resumo:
The genus Asparagopsis was studied using 25 Falkenbergia tetrasporophyte strains collected worldwide. Plastid (cp) DNA RFLP revealed three groups of isolates, which differed in their small subunit rRNA gene sequences, temperature responses, and tetrasporophytic morphology (cell sizes). Strains from Australia, Chile, San Diego, and Atlantic and Mediterranean Europe were identifiable as A. armata Harvey, the gametophyte of which has distinctive barbed spines. This species is believed to be endemic to cold-temperate waters of Australia and New Zealand and was introduced into Europe in the 1920s. All isolates showed identical cpDNA RFLPs, consistent with a recent introduction from Australia. Asparagopsis taxiformis (Delile) Trevisan, the type and only other recognized species, which lacks spines, is cosmopolitan in warm-temperate to tropical waters. Two clades differed morphologically and ecophysiologically and in the future could be recognized as sibling species or subspecies. A Pacific/Italian clade had 4-8degrees C lower survival minima and included a genetically distinct apomictic isolate from Western Australia that corresponded to the form of A. taxiformis originally described as A. sanfordiana Harvey. The second clade, from the Caribbean and the Canaries, is stenothermal (subtropical to tropical) with some ecotypic variation. The genus Asparagopsis consists of two or possibly three species, but a definitive taxonomic treatment of the two A. taxiformis clades requires study of field-collected gametophytes.
Resumo:
The Gymnogongrus devoniensis (Greville) Schotter complex in the North Atlantic Ocean was elucidated by comparative molecular, morphological, and culture studies. Restriction fragment length patterns and hybridization data on organellar DNA revealed two distinct taxa in samples from Europe and eastern Canada. Nucleotide sequences for the intergenic spacer between the large and small subunit genes of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and the adjoining regions of both genes, differed by 12.5-13.4% between the two taxa. One of the taxa, which included material from the type locality of G. devoniensis at Torbay, Devon, England, was taken to represent authentic G. devoniensis. Within this taxon, samples from Ireland, England, northern France, northern Spain, and southern Portugal showed great morphological variation, particularly in habit, but their Rubisco spacer sequences were identical or differed by only a single nucleotide. Constant morphological features included the development, from a single auxiliary cell, of the spherical cystocarp with a thick mucilage sheath that appears to be typical of Gymnogongrus species with internal cystocarps. Two life-history types were found. Northern isolates underwent a direct-type life history, recycling apomictic females by carpospores, whereas the Portuguese isolate followed a heteromorphic life history in which carpospores gave rise to a crustose tetrasporophyte.
Resumo:
<p class="Para" style="box-sizing: border-box; margin: 0px 0px 24px; padding: 0px; word-break: break-word;">The characterization of complex cellular responses to diverse stimuli can be studied by the use of emerging chip-based technologies.</p><p class="Para" style="box-sizing: border-box; margin: 0px 0px 24px; padding: 0px; word-break: break-word; color: rgb(51, 51, 51); font-family: "Open Sans"; font-size: medium; line-height: 25px;">The p53 pathway is critical to maintaining the integrity of the genome in multicellular organisms. The <em class="EmphasisTypeItalic" style="box-sizing: border-box;">p53</em>gene is activated in response to DNA damage and encodes a transcription factor [1], which in turn activates genes that arrest cell growth and induce apoptosis, thereby preventing the propagation of genetically damaged cells. It is the most important known tumor suppressor gene: perhaps half of all human neoplasms have mutations in <em class="EmphasisTypeItalic" style="box-sizing: border-box;">p53</em>, and there is a remarkable concordance between oncogenic mutation and the loss of p53 transcriptional activity [2]. There is also compelling experimental evidence that loss of p53 function (by whatever means) is one of the key oncogenic steps in human cells, along with altered telomerase activity and expression of mutant <em class="EmphasisTypeItalic" style="box-sizing: border-box;">ras</em> [3]. So far, however, relatively few of the genes regulated by p53 have been identified and it is not even known how many binding sites there are for p53 in the genome, although an estimate based on the incidence of the canonical p53 consensus binding site (four palindromic copies of the sequence 5'-PuPuPuGA/T-3', where Pu is either purine) in a limited region suggests there may be as many as 200 to 300, possibly representing the same number of p53-responsive genes [4]. This makes the p53 response an attractive target for the emerging techniques for global analysis of gene expression, and two recent reports [5,6] illustrate the ways in which these techniques can be used to elucidate the spectrum of genes regulated by this key transcription factor. Vogelstein and colleagues [5] have used serial analysis of gene expression (SAGE) to identify 34 genes that exhibit at least a 10-fold upregulation in response to inducible expression of p53; Tanaka <em class="EmphasisTypeItalic" style="box-sizing: border-box;">et al</em>. [6] have used differential display to identify p53R2, a homolog of ribonuclease reductase small subunit (R2) as a target gene, thereby for the first time implicating p53 directly in the repair of DNA damage.</p>
Resumo:
Succinate dehydrogenase B (SDHB) and D (SDHD) subunit gene mutations predispose to adrenal and extraadrenal pheochromocytomas, head and neck paragangliomas (HNPGL), and other tumor types. We report tumor risks in 358 patients with SDHB (n = 295) and SDHD (n = 63) mutations. Risks of HNPGL and pheochromocytoma in SDHB mutation carriers were 29% and 52%, respectively, at age 60 years and 71% and 29%, respectively, in SDHD mutation carriers. Risks of malignant pheochromocytoma and renal tumors (14% at age 70 years) were higher in SDHB mutation carriers; 55 different mutations (including a novel recurrent exon 1 deletion) were identified. No clear genotype-phenotype correlations were detected for SDHB mutations. However, SDHD mutations predicted to result in loss of expression or a truncated or unstable protein were associated with a significantly increased risk of pheochromocytoma compared to missense mutations that were not predicted to impair protein stability (most such cases had the common p.Pro81Leu mutation). Analysis of the largest cohort of SDHB/D mutation carriers has enhanced estimates of penetrance and tumor risk and supports in silicon protein structure prediction analysis for functional assessment of mutations. The differing effect of the SDHD p.Pro81Leu on HNPGL and pheochromocytoma, risks suggests differing mechanisms of tumorigenesis in SDH-associated HNPGL and pheochromocytoma. Hum Mutat 31:41-51, 2010. (C) 2009 Wiley-Liss, Inc.
Resumo:
The explanation for why some patients develop psychotic change in Alzheimer's disease (AD) is unclear. "Psychosis-modifier genes" may act in the setting of neurodegeneration to produce AD plus psychosis in a similar way to how genetic modulation during neurodevelopment leads to schizophrenia. Because there is increasing interest in the common disruption of cytokine pathways seen in both AD and schizophrenia, we tested the association between the functional interleukin-1beta -511 promoter polymorphism with delusions and hallucinations in AD. Significant associations between psychotic symptoms and the CC genotype (p = 0.001 - p = 0.043) and C allele (p = 0.014 vs p = 0.048) were found, thus confirming the previously noted increased risk in schizophrenia.
Resumo:
We have determined the methylation status of the CpG island of the oestrogen receptor gene in seven human ovarian cell lines. Cell lines expressing oestrogen receptor showed no evidence of hypermethylation. In three of four cell lines that produced no detectable oestrogen receptor protein, hypermethylation was observed at the NotI site of the CpG island. These results indicate that aberrant hypermethylation may be responsible for a significant proportion of epithelial ovarian tumours in which oestrogen receptor expression is lost.
Resumo:
Small 1,000-bp fragments of genomic DNA obtained from human malignant breast cancer cell lines when transfected into a benign rat mammary cell line enhance transcription of the osteopontin gene and thereby cause the cells to metastasize in syngeneic rats. To identify the molecular events underlying this process, transient cotransfections of an osteopontin promoter-reporter construct and fragments of one metastasis-inducing DNA (Met-DNA) have identified the active components in the Met-DNA as the binding sites for the T-cell factor (Tcf) family of transcription factors. Incubation of cell extracts with active DNA fragments containing the sequence CAAAG caused retardation of their mobilities on polyacrylamide gels, and Western blotting identified Tcf-4, beta-catenin, and E-cadherin in the relevant DNA complexes in vitro. Transfection of an expression vector for Tcf-4 inhibited the stimulated activity of the osteopontin promoter-reporter construct caused by transiently transfected active fragments of Met-DNA or permanently transfected Met-DNA. This stimulated activity of the osteopontin promoter-reporter construct is accompanied by an increase in endogenous osteopontin mRNA but not in fos or actin mRNAs in the transfected cells. Permanent transfection of the benign rat mammary cell line with a 20-bp fragment from the Met-DNA containing the Tcf recognition sequence CAAAG caused an enhanced permanent production of endogenous osteopontin protein in vitro and induced the cells to metastasize in syngeneic rats in vivo. The corresponding fragment without the CAAAG sequence was without either effect. Therefore, the regulatory effect of the C9-Met-DNA is exerted, at least in part, by a CAAAG sequence that can sequester the endogenous inhibitory Tcf-4 and thereby promote transcription of osteopontin, the direct effector of metastasis in this system.
Resumo:
Heme oxygenase-1 (HO-1) is a cytoprotective molecule and increased expression in experimental transplant models correlates with reduced graft injury. A functional dinucleotide repeat (GT)n polymorphism, within the HO-1 promoter, regulates gene expression; a short number of repeats (S-allele