10 resultados para Rivas Vaciamadrid

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today, the classification systems for myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) already incorporate cytogenetic and molecular genetic aberrations in an attempt to better reflect disease biology. However, in many MDS/AML patients no genetic aberrations have been identified yet, and even within some cytogenetically well-defined subclasses there is considerable clinical heterogeneity. Recent advances in genomics technologies such as gene expression profiling (GEP) provide powerful tools to further characterize myeloid malignancies at the molecular level, with the goal to refine the MDS/AML classification system, incorporating as yet unknown molecular genetic and epigenetic pathomechanisms, which are likely reflected by aberrant gene expression patterns. In this study, we provide a comprehensive review on how GEP has contributed to a refined molecular taxonomy of MDS and AML with regard to diagnosis, prediction of clinical outcome, discovery of novel subclasses and identification of novel therapeutic targets and novel drugs. As many challenges remain ahead, we discuss the pitfalls of this technology and its potential including future integrative studies with other genomics technologies, which will continue to improve our understanding of malignant transformation in myeloid malignancies and thereby contribute to individualized risk-adapted treatment strategies for MDS and AML patients. Leukemia (2011) 25, 909-920; doi:10.1038/leu.2011.48; published online 29 March 2011

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decreasing the constriction size and residence time in hydrodynamic cavitation is predicted to give increased hot spot temperatures at bubble collapse and increased radical formation rate. Cavitation in a 100 x 100 mu m(2) rectangular micro channel and in a circular 750 mu m diameter milli channel has been investigated with computational fluid dynamics software and with imaging and radical production experiments. No radical production has been measured in the micro channel. This is probably because there is no spherically symmetrical collapse of the gas pockets in the channel which yield high hot spot temperatures. The potassium iodide oxidation yield in the presence of chlorohydrocarbons in the milli channel of up to 60 nM min(-1) is comparable to values reported on hydrodynamic cavitation in literature, but lower than values for ultrasonic cavitation. These small constrictions can create high apparent cavitation collapse frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene expression profiling signatures may be used to classify the subtypes of Myelodysplastic syndrome (MDS) patients. However, there are few reports on the global methylation status in MDS. The integration of genome-wide epigenetic regulatory marks with gene expression levels would provide additional information regarding the biological differences between MDS and healthy controls. Gene expression and methylation status were measured using high-density microarrays. A total of 552 differentially methylated CpG loci were identified as being present in low-risk MDS; hypermethylated genes were more frequent than hypomethylated genes. In addition, mRNA expression profiling identified 1005 genes that significantly differed between low-risk MDS and the control group. Integrative analysis of the epigenetic and expression profiles revealed that 66.7% of the hypermethylated genes were underexpressed in low-risk MDS cases. Gene network analysis revealed molecular mechanisms associated with the low-risk MDS group, including altered apoptosis pathways. The two key apoptotic genes BCL2 and ETS1 were identified as silenced genes. In addition, the immune response and micro RNA biogenesis were affected by the hypermethylation and underexpression of IL27RA and DICER1. Our integrative analysis revealed that aberrant epigenetic regulation is a hallmark of low-risk MDS patients and could have a central role in these diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of sodium surface species in the modification of a platinum (Pt) catalyst film supported on 8 mol% yttria-stabilised-zirconia (YSZ) was investigated under a flow of 20 kPa oxygen at 400 °C. Cyclic and linear sweep voltammetry were used to investigate the kinetics of the oxygen charge transfer reaction. The Pt/YSZ systems of both ‘clean’ and variable-coverage sodium-modified catalyst surfaces were also characterised using SEM, XPS and work function measurements using the Kelvin probe technique.

Samples with sodium coverage from 0.5 to 100% were used. It was found that sodium addition modifies the binding energy of oxygen onto the catalyst surface. Cyclic voltammetry experiments showed that higher overpotentials were required for oxygen reduction with increasing sodium coverage. In addition, sodium was found to modify oxygen storage and/or adsorption and diffusion increasing current densities at higher cathodic overpotential. Ex situ XPS measurements showed the presence of sodium hydroxide, carbonate and/or oxide species on the catalyst surface, while the Kelvin probe technique showed a decrease of approximately 250 meV in the work function of samples with more than 50% sodium coverage (compared to a nominally ‘clean’ sample).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of spillover processes on the activity of a catalyst system consisting of a mixed oxygen ion and electronic conducting support La0.6Sr0.4Co0.2Fe0.8O3d and a metal catalyst (Pt) were investigated. Two types of model single-pellet catalysts were used employing Pt deposited on both sides of a dense LSCF disc pellet. One of these single pellets employed highly disperse, physically non-continuous Pt, in contrast to studies on electrochemical promotion, while the other used a low dispersion continuous film. Driving forces for promoter migration were controlled through the manipulation of the oxygen chemical potential difference across the membrane. Catalyst rate modification was observed in all cases. However, it was found that there is a complex relationship between the rate modification, the driving forces for spillover and the geometrical arrangement of the catalyst on the support (i.e. catalyst dispersion).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pan-resistant Acinetobacter baumannii have prompted the search for therapeutic alternatives. We evaluate the efficacy of four cecropin A-melittin hybrid peptides (CA-M) in vivo. Toxicity was determined in mouse erythrocytes and in mice (lethal dose parameters were LD(0), LD(50), LD(100)). Protective dose 50 (PD(50)) was determined by inoculating groups of ten mice with the minimal lethal dose of A. baumannii (BMLD) and treating with doses of each CA-M from 0.5 mg/kg to LD(0). The activity of CA-Ms against A. baumannii was assessed in a peritoneal sepsis model. Mice were sacrificed at 0 and 1, 3, 5, and 7-h post-treatment. Spleen and peritoneal fluid bacterial concentrations were measured. CA(1-8)M(1-18) was the less haemolytic on mouse erythrocytes. LD(0) (mg/kg) was 32 for CA(1-8)M(1-18), CA(1-7)M(2-9), and Oct-CA(1-7)M(2-9), and 16 for CA(1-7)M(5-9). PD(50) was not achieved with non-toxic doses (= LD(0)). In the sepsis model, all CA-Ms were bacteriostatic in spleen, and decreased bacterial concentration (p <0.05) in peritoneal fluid, at 1-h post-treatment; at later times, bacterial regrowth was observed in peritoneal fluid. CA-Ms showed local short-term efficacy in the peritoneal sepsis model caused by pan-resistant Acinetobacter baumannii.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of SF3B1 gene mutations is a hallmark of refractory anemia with ring sideroblasts (RARS). However, the mechanisms responsible for iron accumulation that characterize the Myelodysplastic Syndrome with ring sideroblasts (MDS-RS) are not completely understood. In order to gain insight in the molecular basis of MDS-RS, an integrative study of the expression and mutational status of genes related to iron and mitochondrial metabolism was carried out. A total of 231 low-risk MDS patients and 81 controls were studied. Gene expression analysis revealed that iron metabolism and mitochondrial function had the highest number of genes deregulated in RARS patients compared to controls and the refractory cytopenias with unilineage dysplasia (RCUD). Thus mitochondrial transporters SLC25 (SLC25A37 and SLC25A38) and ALAD genes were over-expressed in RARS. Moreover, significant differences were observed between patients with SF3B1 mutations and patients without the mutations. The deregulation of genes involved in iron and mitochondrial metabolism provides new insights in our knowledge of MDS-RS. New variants that could be involved in the pathogenesis of these diseases have been identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of wireless electrochemical promotion of catalysis (EPOC) of a Pt catalyst supported on a mixed ionic electronic conducting hollow fibre membranes is investigated. This reactor configuration offers high surface areas per unit volume and is ideally suited for scaled-up applications. The MIEC membrane used is the La 0.6Sr 0.4Co 0.2Fe 0.8O 3 perovskite (LSCF) with a Pt catalyst film deposited on the outer surface of the LSCF membrane. Experimental results showed that after initial catalyst deactivation (in the absence of an oxygen chemical potential difference across the membrane) the catalytic rate can be enhanced by using an oxygen sweep and wireless EPOC can be used for the in situ regeneration of a deactivated catalyst. © 2012 Elsevier B.V.