175 resultados para Rapid cooling
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites.
Resumo:
The cooling process in conventional rotomolding is relatively long due to poor thermal conductivity of plastics. The lack of internal cooling is a major limitation although rapid external cooling is possible. Various internal cooling methodologies have been studied to reduce the cycle time. These include the use of compressed air, cryogenic liquid nitrogen, chilled water coils, and cryogenic liquid carbon dioxide, all of which have limitations. However, this article demonstrates the use of water spray cooling of polymers as a viable and effective method for internal cooling in rotomolding. To this end, hydraulic, pneumatic, and ultrasonic nozzles were applied and evaluated using a specially constructed test rig to assess their efficiency. The effects of nozzle type and different parametric settings on water droplet size, velocity, and mass flow rate were analyzed and their influence on cooling rate, surface quality, and morphology of polymer exposed to spray cooling were characterized. The pneumatic nozzle provided highest average cooling rate while the hydraulic nozzle gave lowest average cooling rate. The ultrasonic nozzle with medium droplet size traveling at low velocity produced satisfactory surface finish. Water spray cooling produced smaller spherulites compared to ambient cooling whilst increasing the cooling rate decreases the percentage crystallinity. © 2011 Society of Plastics Engineers Copyright © 2011 Society of Plastics Engineers.
Resumo:
The ability to rapidly detect circulating small RNAs, in particular microRNAs (miRNAs), would further increase their already established potential as biomarkers in a range of conditions. One rate-limiting factor is the time taken to perform quantitative real time PCR amplification. We therefore evaluated the ability of a novel thermal cycler to perform this step in less than 10 minutes. Quantitative PCR was performed on an xxpress® thermal cycler (BJS Biotechnologies, Perivale, UK), which employs a resistive heating system and forced air cooling to achieve thermal ramp rates of 10 °C/s, and a conventional peltier-controlled LightCycler 480 system (Roche, Basel, Switzerland) ramping at 4.8 °C/s. The threshold cycle (Ct) for detection of 18S rDNA from a standard genomic DNA sample was significantly more variable across the block (F-test, p=2.4x10-25) for the xxpress (20.01±0.47SD) than the LightCycler (19.87±0.04SD). RNA was extracted from human plasma, reverse transcribed and a panel of miRNAs amplified and detected using SYBR green (Kapa Biosystems, Wilmington, Ma, USA). The sensitivity of both systems was broadly comparable and both detected a panel of miRNAs reliably and indicated similar relative abundances. The xxpress thermal cycler facilitates rapid qPCR detection of small RNAs and brings point-of care diagnostics based upon circulating miRNAs a step closer to reality.
Resumo:
Rotational molding suffers from a relatively long cycle time, which hampers more widespread growth of the process. During each cycle, both the polymer and mold must be heated from room temperature to above polymer melting temperature and subsequently cooled to room temperature. The cooling time in this process is relatively long due to the poor thermal conductivity of plastics. Although rapid external cooling is possible, internal cooling rates are the major limitation. This causes the process to be uneconomical for large production runs of small parts. Various researchers have strived to minimize cycle times by applying various internal cooling procedures. This article presents a review of these methods, including computer simulations and practical investigations published to date. The effects of cooling rate on the morphology, shrinkage, warpage, and impact properties of rotationally molded polyolefins are also highlighted. In general, rapid and symmetrical cooling across the mold results in smaller spherulite size, increased mechanical properties and less potential warpage or distortion in moldings. POLYM. ENG. SCI., 2011. ©2011 Society of Plastics Engineers.
Resumo:
This paper describes an experimental investigation into the surface heat transfer coefficient of finned metal cylinders in a free air stream. Eight cast aluminium alloy cylinders were tested with four different fin pitches and five different fin lengths. The cylinders and their fins were designed to be representative of those found on a motorcycle engine. Each electrically heated cylinder was mounted in a wind tunnel and subjected to a range of air speeds between 2 and 20 m/s. The surface heat transfer coefficient, h, was found primarily to be a function of the air speed and the fin separation, with fin length having a lesser effect. The coefficient increases with airspeed and as the fins are separated or shortened. It was also noted that a limiting value of coefficient exists, influenced only by airspeed. Above the limiting value the surface heat transfer could not be increased by further separation of the fins or reduction in their length.
Resumo:
Rapid tryptophan (Trp) depletion (RTD) has been reported to cause deterioration in the quality of decision making and impaired reversal learning, while leaving attentional set shifting relatively unimpaired. These findings have been attributed to a more powerful neuromodulatory effect of reduced 5-HT on ventral prefrontal cortex (PFC) than on dorsolateral PFC. In view of the limited number of reports, the aim of this study was to independently replicate these findings using the same test paradigms. Healthy human subjects without a personal or family history of affective disorder were assessed using a computerized decision making/gambling task and the CANTAB ID/ED attentional set-shifting task under Trp-depleted (n=17; nine males and eight females) or control (n=15; seven males and eight females) conditions, in a double-blind, randomized, parallel-group design. There was no significant effect of RTD on set shifting, reversal learning, risk taking, impulsivity, or subjective mood. However, RTD significantly altered decision making such that depleted subjects chose the more likely of two possible outcomes significantly more often than controls. This is in direct contrast to the previous report that subjects chose the more likely outcome significantly less often following RTD. In the terminology of that report, our result may be interpreted as improvement in the quality of decision making following RTD. This contrast between studies highlights the variability in the cognitive effects of RTD between apparently similar groups of healthy subjects, and suggests the need for future RTD studies to control for a range of personality, family history, and genetic factors that may be associated with 5-HT function.
Resumo:
It is standard clinical practice to use a combination of two or more antimicrobial agents to treat an infection caused by Pseudonionas aeruginosa. The antibiotic combinations are usually selected empirically with methods to determine the antimicrobial effect of the combination such as the time-kill assay rarely used as they are time-consuming and labour intensive to perforin. Here, we report a modified time-kill assay, based on the reduction of the tetrazolium salt, 2,3-bis[2-methyloxy-4-nitro-5-sulfopheny1]-2H-tetrazolium-5-carboxanilide (XTT), that allows simple, inexpensive and more rapid determination of the in vitro activity of antibiotic combinations against P aeruginosa. The assay was used to determine the in vitro activity of ceftazidime and tobramycin in combination against P. aertiginosa isolates from cystic fibrosis patients and the results obtained compared with those from conventional viable count time-kill assays. There was good agreement in interpretation of results obtained by the XTT and conventional viable count assays, with similar growth curves apparent and the most effective concentration combinations determined by both methods identical for all isolates tested. The XTT assay clearly indicated whether an antibiotic combination had a synergistic, indifferent or antagonistic effect and could, therefore, provide a useful method for rapidly determining the activity of a large number of antibiotic combinations against clinical isolates. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
There have been numerous recent observations of changes in the behavior and dynamics of migratory bird populations, but the plasticity of the migratory trait and our inability to track small animals over large distances have hindered investigation of the mechanisms behind migratory change. We used habitat-specific stable isotope signatures to show that recently evolved allopatric wintering populations of European blackcaps Sylvia atricapilla pair assortatively on their sympatric breeding grounds. Birds wintering further north also produce larger clutches and fledge more young. These findings describe an important process in the evolution of migratory divides, new migration routes, and wintering quarters. Temporal segregation of breeding is a way in which subpopulations of vertebrates may become isolated in sympatry.
Resumo:
OBJECTIVE: To confirm that early growth is associated with type 1 diabetes risk in European children and elucidate any role of infant feeding. RESEARCH DESIGN AND METHODS: Five centers participated, each with a population-based register of type 1 diabetes diagnosed at