11 resultados para REASONING OVER INCONSISTENCY

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many domains when we have several competing classifiers available we want to synthesize them or some of them to get a more accurate classifier by a combination function. In this paper we propose a ‘class-indifferent’ method for combining classifier decisions represented by evidential structures called triplet and quartet, using Dempster's rule of combination. This method is unique in that it distinguishes important elements from the trivial ones in representing classifier decisions, makes use of more information than others in calculating the support for class labels and provides a practical way to apply the theoretically appealing Dempster–Shafer theory of evidence to the problem of ensemble learning. We present a formalism for modelling classifier decisions as triplet mass functions and we establish a range of formulae for combining these mass functions in order to arrive at a consensus decision. In addition we carry out a comparative study with the alternatives of simplet and dichotomous structure and also compare two combination methods, Dempster's rule and majority voting, over the UCI benchmark data, to demonstrate the advantage our approach offers. (A continuation of the work in this area that was published in IEEE Trans on KDE, and conferences)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the rapid growth in the quantity and complexity of scientific knowledge available for scientists, and allied professionals, the problems associated with harnessing this knowledge are well recognized. Some of these problems are a result of the uncertainties and inconsistencies that arise in this knowledge. Other problems arise from heterogeneous and informal formats for this knowledge. To address these problems, developments in the application of knowledge representation and reasoning technologies can allow scientific knowledge to be captured in logic-based formalisms. Using such formalisms, we can undertake reasoning with the uncertainty and inconsistency to allow automated techniques to be used for querying and combining of scientific knowledge. Furthermore, by harnessing background knowledge, the querying and combining tasks can be carried out more intelligently. In this paper, we review some of the significant proposals for formalisms for representing and reasoning with scientific knowledge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developing a desirable framework for handling inconsistencies in software requirements specifications is a challenging problem. It has been widely recognized that the relative priority of requirements can help developers to make some necessary trade-off decisions for resolving con- flicts. However, for most distributed development such as viewpoints-based approaches, different stakeholders may assign different levels of priority to the same shared requirements statement from their own perspectives. The disagreement in the local levels of priority assigned to the same shared requirements statement often puts developers into a dilemma during the inconsistency handling process. The main contribution of this paper is to present a prioritized merging-based framework for handling inconsistency in distributed software requirements specifications. Given a set of distributed inconsistent requirements collections with the local prioritization, we first construct a requirements specification with a prioritization from an overall perspective. We provide two approaches to constructing a requirements specification with the global prioritization, including a merging-based construction and a priority vector-based construction. Following this, we derive proposals for handling inconsistencies from the globally prioritized requirements specification in terms of prioritized merging. Moreover, from the overall perspective, these proposals may be viewed as the most appropriate to modifying the given inconsistent requirements specification in the sense of the ordering relation over all the consistent subsets of the requirements specification. Finally, we consider applying negotiation-based techniques to viewpoints so as to identify an acceptable common proposal from these proposals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measuring the degree of inconsistency of a belief base is an important issue in many real world applications. It has been increasingly recognized that deriving syntax sensitive inconsistency measures for a belief base from its minimal inconsistent subsets is a natural way forward. Most of the current proposals along this line do not take the impact of the size of each minimal inconsistent subset into account. However, as illustrated by the well-known Lottery Paradox, as the size of a minimal inconsistent subset increases, the degree of its inconsistency decreases. Another lack in current studies in this area is about the role of free formulas of a belief base in measuring the degree of inconsistency. This has not yet been characterized well. Adding free formulas to a belief base can enlarge the set of consistent subsets of that base. However, consistent subsets of a belief base also have an impact on the syntax sensitive normalized measures of the degree of inconsistency, the reason for this is that each consistent subset can be considered as a distinctive plausible perspective reflected by that belief base,whilst eachminimal inconsistent subset projects a distinctive viewof the inconsistency. To address these two issues,we propose a normalized framework formeasuring the degree of inconsistency of a belief base which unifies the impact of both consistent subsets and minimal inconsistent subsets. We also show that this normalized framework satisfies all the properties deemed necessary by common consent to characterize an intuitively satisfactory measure of the degree of inconsistency for belief bases. Finally, we use a simple but explanatory example in equirements engineering to illustrate the application of the normalized framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A service is a remote computational facility which is made available for general use by means of a wide-area network. Several types of service arise in practice: stateless services, shared state services and services with states which are customised for individual users. A service-based orchestration is a multi-threaded computation which invokes remote services in order to deliver results back to a user (publication). In this paper a means of specifying services and reasoning about the correctness of orchestrations over stateless services is presented. As web services are potentially unreliable the termination of even finite orchestrations cannot be guaranteed. For this reason a partial-correctness powerdomain approach is proposed to capture the semantics of recursive orchestrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four- and five-year-olds completed two sets of tasks that involved reasoning about the temporal order in which events had occurred in the past or were to occur in the future. Four-year-olds succeeded on the tasks that involved reasoning about the order of past events but not those that involved reasoning about the order of future events, whereas 5-year-olds passed both types of tasks. Individual children who failed the past-event tasks were not particularly likely to fail the more difficult future-event tasks. However, children's performance on the reasoning tasks was predictive of their performance on a task assessing their comprehension of the terms “before” and “after.” Our results suggest that there may be a developmental change over this age range in the ability to flexibly represent and reason about the before-and-after relationships between events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a class of defects in software requirements specification, inconsistency has been widely studied in both requirements engineering and software engineering. It has been increasingly recognized that maintaining consistency alone often results in some other types of non-canonical requirements, including incompleteness of a requirements specification, vague requirements statements, and redundant requirements statements. It is therefore desirable for inconsistency handling to take into account the related non-canonical requirements in requirements engineering. To address this issue, we propose an intuitive generalization of logical techniques for handling inconsistency to those that are suitable for managing non-canonical requirements, which deals with incompleteness and redundancy, in addition to inconsistency. We first argue that measuring non-canonical requirements plays a crucial role in handling them effectively. We then present a measure-driven logic framework for managing non-canonical requirements. The framework consists of five main parts, identifying non-canonical requirements, measuring them, generating candidate proposals for handling them, choosing commonly acceptable proposals, and revising them according to the chosen proposals. This generalization can be considered as an attempt to handle non-canonical requirements along with logic-based inconsistency handling in requirements engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Base rate neglect on the mammography problem can be overcome by explicitly presenting a causal basis for the typically vague false-positive statistic. One account of this causal facilitation effect is that people make probabilistic judgements over intuitive causal models parameterized with the evidence in the problem. Poorly defined or difficult-to-map evidence interferes with this process, leading to errors in statistical reasoning. To assess whether the construction of parameterized causal representations is an intuitive or deliberative process, in Experiment 1 we combined a secondary load paradigm with manipulations of the presence or absence of an alternative cause in typical statistical reasoning problems. We found limited effects of a secondary load, no evidence that information about an alternative cause improves statistical reasoning, but some evidence that it reduces base rate neglect errors. In Experiments 2 and 3 where we did not impose a load, we observed causal facilitation effects. The amount of Bayesian responding in the causal conditions was impervious to the presence of a load (Experiment 1) and to the precise statistical information that was presented (Experiment 3). However, we found less Bayesian responding in the causal condition than previously reported. We conclude with a discussion of the implications of our findings and the suggestion that there may be population effects in the accuracy of statistical reasoning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explored the development of sensitivity to causal relations in children’s inductive reasoning. Children (5-, 8-, and 12-year-olds) and adults were given trials in which they decided whether a property known to be possessed by members of one category was also possessed by members of (a) a taxonomically related category or (b) a causally related category. The direction of the causal link was either predictive (prey → predator) or diagnostic (predator → prey), and the property that participants reasoned about established either a taxonomic or causal context. There was a causal asymmetry effect across all age groups, with more causal choices when the causal link was predictive than when it was diagnostic. Furthermore, context-sensitive causal reasoning showed a curvilinear development, with causal choices being most frequent for 8-year-olds regardless of context. Causal inductions decreased thereafter because 12-year-olds and adults made more taxonomic choices when reasoning in the taxonomic context. These findings suggest that simple causal relations may often be the default knowledge structure in young children’s inductive reasoning, that sensitivity to causal direction is present early on, and that children over-generalize their causal knowledge when reasoning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is extensive theoretical work on measures of inconsistency for arbitrary formulae in knowledge bases. Many of these are defined in terms of the set of minimal inconsistent subsets (MISes) of the base. However, few have been implemented or experimentally evaluated to support their viability, since computing all MISes is intractable in the worst case. Fortunately, recent work on a related problem of minimal unsatisfiable sets of clauses (MUSes) offers a viable solution in many cases. In this paper, we begin by drawing connections between MISes and MUSes through algorithms based on a MUS generalization approach and a new optimized MUS transformation approach to finding MISes. We implement these algorithms, along with a selection of existing measures for flat and stratified knowledge bases, in a tool called mimus. We then carry out an extensive experimental evaluation of mimus using randomly generated arbitrary knowledge bases. We conclude that these measures are viable for many large and complex random instances. Moreover, they represent a practical and intuitive tool for inconsistency handling.