97 resultados para Quadratic Programming
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Surrogate-based-optimization methods provide a means to achieve high-fidelity design optimization at reduced computational cost by using a high-fidelity model in combination with lower-fidelity models that are less expensive to evaluate. This paper presents a provably convergent trust-region model-management methodology for variableparameterization design models: that is, models for which the design parameters are defined over different spaces. Corrected space mapping is introduced as a method to map between the variable-parameterization design spaces. It is then used with a sequential-quadratic-programming-like trust-region method for two aerospace-related design optimization problems. Results for a wing design problem and a flapping-flight problem show that the method outperforms direct optimization in the high-fidelity space. On the wing design problem, the new method achieves 76% savings in high-fidelity function calls. On a bat-flight design problem, it achieves approximately 45% time savings, although it converges to a different local minimum than did the benchmark.
Resumo:
A constrained non-linear, physical model-based, predictive control (NPMPC) strategy is developed for improved plant-wide control of a thermal power plant. The strategy makes use of successive linearisation and recursive state estimation using extended Kalman filtering to obtain a linear state-space model. The linear model and a quadratic programming routine are used to design a constrained long-range predictive controller One special feature is the careful selection of a specific set of plant model parameters for online estimation, to account for time-varying system characteristics resulting from major system disturbances and ageing. These parameters act as nonstationary stochastic states and help to provide sufficient degrees-of-freedom to obtain unbiased estimates of controlled outputs. A 14th order non-linear plant model, simulating the dominant characteristics of a 200 MW oil-fired pou er plant has been used to test the NPMPC algorithm. The control strategy gives impressive simulation results, during large system disturbances and extremely high rate of load changes, right across the operating range. These results compare favourably to those obtained with the state-space GPC method designed under similar conditions.
Resumo:
As a promising method for pattern recognition and function estimation, least squares support vector machines (LS-SVM) express the training in terms of solving a linear system instead of a quadratic programming problem as for conventional support vector machines (SVM). In this paper, by using the information provided by the equality constraint, we transform the minimization problem with a single equality constraint in LS-SVM into an unconstrained minimization problem, then propose reduced formulations for LS-SVM. By introducing this transformation, the times of using conjugate gradient (CG) method, which is a greatly time-consuming step in obtaining the numerical solution, are reduced to one instead of two as proposed by Suykens et al. (1999). The comparison on computational speed of our method with the CG method proposed by Suykens et al. and the first order and second order SMO methods on several benchmark data sets shows a reduction of training time by up to 44%. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A micro-grid is an autonomous system which can be operated and connected to an external system or isolated with the help of energy storage systems (ESSs). While the daily output of distributed generators (DGs) strongly depends on the temporal distribution of natural resources such as wind and solar, unregulated electric vehicle (EV) charging demand will deteriorate the imbalance between the daily load and generation curves. In this paper, a statistical model is presented to describe daily EV charging/discharging behaviour. An optimisation problem is proposed to obtain economic operation for the micro-grid based on this model. In day-ahead scheduling, with estimated information of power generation and load demand, optimal charging/discharging of EVs during 24 hours is obtained. A series of numerical optimization solutions in different scenarios is achieved by serial quadratic programming. The results show that optimal charging/discharging of EVs, a daily load curve can better track the generation curve and the network loss and required ESS capacity are both decreased. The paper also demonstrates cost benefits for EVs and operators.
Resumo:
Traditional internal combustion engine vehicles are a major contributor to global greenhouse gas emissions and other air pollutants, such as particulate matter and nitrogen oxides. If the tail pipe point emissions could be managed centrally without reducing the commercial and personal user functionalities, then one of the most attractive solutions for achieving a significant reduction of emissions in the transport sector would be the mass deployment of electric vehicles. Though electric vehicle sales are still hindered by battery performance, cost and a few other technological bottlenecks, focused commercialisation and support from government policies are encouraging large scale electric vehicle adoptions. The mass proliferation of plug-in electric vehicles is likely to bring a significant additional electric load onto the grid creating a highly complex operational problem for power system operators. Electric vehicle batteries also have the ability to act as energy storage points on the distribution system. This double charge and storage impact of many uncontrollable small kW loads, as consumers will want maximum flexibility, on a distribution system which was originally not designed for such operations has the potential to be detrimental to grid balancing. Intelligent scheduling methods if established correctly could smoothly integrate electric vehicles onto the grid. Intelligent scheduling methods will help to avoid cycling of large combustion plants, using expensive fossil fuel peaking plant, match renewable generation to electric vehicle charging and not overload the distribution system causing a reduction in power quality. In this paper, a state-of-the-art review of scheduling methods to integrate plug-in electric vehicles are reviewed, examined and categorised based on their computational techniques. Thus, in addition to various existing approaches covering analytical scheduling, conventional optimisation methods (e.g. linear, non-linear mixed integer programming and dynamic programming), and game theory, meta-heuristic algorithms including genetic algorithm and particle swarm optimisation, are all comprehensively surveyed, offering a systematic reference for grid scheduling considering intelligent electric vehicle integration.
Resumo:
Background: Gene expression connectivity mapping has proven to be a powerful and flexible tool for research. Its application has been shown in a broad range of research topics, most commonly as a means of identifying potential small molecule compounds, which may be further investigated as candidates for repurposing to treat diseases. The public release of voluminous data from the Library of Integrated Cellular Signatures (LINCS) programme further enhanced the utilities and potentials of gene expression connectivity mapping in biomedicine. Results: We describe QUADrATiC (http://go.qub.ac.uk/QUADrATiC), a user-friendly tool for the exploration of gene expression connectivity on the subset of the LINCS data set corresponding to FDA-approved small molecule compounds. It enables the identification of compounds for repurposing therapeutic potentials. The software is designed to cope with the increased volume of data over existing tools, by taking advantage of multicore computing architectures to provide a scalable solution, which may be installed and operated on a range of computers, from laptops to servers. This scalability is provided by the use of the modern concurrent programming paradigm provided by the Akka framework. The QUADrATiC Graphical User Interface (GUI) has been developed using advanced Javascript frameworks, providing novel visualization capabilities for further analysis of connections. There is also a web services interface, allowing integration with other programs or scripts.Conclusions: QUADrATiC has been shown to provide an improvement over existing connectivity map software, in terms of scope (based on the LINCS data set), applicability (using FDA-approved compounds), usability and speed. It offers potential to biological researchers to analyze transcriptional data and generate potential therapeutics for focussed study in the lab. QUADrATiC represents a step change in the process of investigating gene expression connectivity and provides more biologically-relevant results than previous alternative solutions.
Resumo:
Employing Bak’s dimension theory, we investigate the nonstable quadratic K-group K1,2n(A, ) = G2n(A, )/E2n(A, ), n 3, where G2n(A, ) denotes the general quadratic group of rank n over a form ring (A, ) and E2n(A, ) its elementary subgroup. Considering form rings as a category with dimension in the sense of Bak, we obtain a dimension filtration G2n(A, ) G2n0(A, ) G2n1(A, ) E2n(A, ) of the general quadratic group G2n(A, ) such that G2n(A, )/G2n0(A, ) is Abelian, G2n0(A, ) G2n1(A, ) is a descending central series, and G2nd(A)(A, ) = E2n(A, ) whenever d(A) = (Bass–Serre dimension of A) is finite. In particular K1,2n(A, ) is solvable when d(A) <.
Resumo:
This research published in the foremost international journal in information theory and shows interplay between complex random matrix and multiantenna information theory. Dr T. Ratnarajah is leader in this area of research and his work has been contributed in the development of graduate curricula (course reader) in Massachusetts Institute of Technology (MIT), USA, By Professor Alan Edelman. The course name is "The Mathematics and Applications of Random Matrices", see http://web.mit.edu/18.338/www/projects.html
Resumo:
The standard linear-quadratic survival model for radiotherapy is used to investigate different schedules of radiation treatment planning to study how these may be affected by different tumour repopulation kinetics between treatments.
Resumo:
The technical challenges in the design and programming of signal processors for multimedia communication are discussed. The development of terminal equipment to meet such demand presents a significant technical challenge, considering that it is highly desirable that the equipment be cost effective, power efficient, versatile, and extensible for future upgrades. The main challenges in the design and programming of signal processors for multimedia communication are, general-purpose signal processor design, application-specific signal processor design, operating systems and programming support and application programming. The size of FFT is programmable so that it can be used for various OFDM-based communication systems, such as digital audio broadcasting (DAB), digital video broadcasting-terrestrial (DVB-T) and digital video broadcasting-handheld (DVB-H). The clustered architecture design and distributed ping-pong register files in the PAC DSP raise new challenges of code generation.