60 resultados para Portable.
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The study details the development of a fully validated, rapid and portable sensor based method for the on-site analysis of microcystins in freshwater samples. The process employs a novel lysis method for the mechanical lysis of cyanobacterial cells, with glass beads and a handheld frother in only 10min. The assay utilises an innovative planar waveguide device that, via an evanescent wave excites fluorescent probes, for amplification of signal in a competitive immunoassay, using an anti-microcystin monoclonal with cross-reactivity against the most common, and toxic variants. Validation of the assay showed the limit of detection (LOD) to be 0.78ngmL and the CCß to be 1ngmL. Robustness of the assay was demonstrated by intra- and inter-assay testing. Intra-assay analysis had % C.V.s between 8 and 26% and recoveries between 73 and 101%, with inter-assay analysis demonstrating % C.V.s between 5 and 14% and recoveries between 78 and 91%. Comparison with LC-MS/MS showed a high correlation (R=0.9954) between the calculated concentrations of 5 different Microcystis aeruginosa cultures for total microcystin content. Total microcystin content was ascertained by the individual measurement of free and cell-bound microcystins. Free microcystins can be measured to 1ngmL, and with a 10-fold concentration step in the intracellular microcystin protocol (which brings the sample within the range of the calibration curve), intracellular pools may be determined to 0.1ngmL. This allows the determination of microcystins at and below the World Health Organisation (WHO) guideline value of 1µgL. This sensor represents a major advancement in portable analysis capabilities and has the potential for numerous other applications.
Resumo:
Tissue micro array (TMA) is based on the idea of applying miniaturization and a high throughput approach to hybridization-based analyses of tissues. It facilitates biomedical research on a large scale in a single experiment; thus representing one of the most commonly used technologies in translational research. A critical analysis of the existing TMA instruments indicates that there are potential constraints in terms of portability, apart from costs and complexity. This paper will present the development of an affordable, configurable, and portable TMA instrument to allow an efficient collection of tissues, especially in instrument-to-tissue scenarios. The purely mechanical instrument requires no energy sources other than the user, is light weight, portable, and simple to use. [DOI: 10.1115/1.4004922]
Resumo:
The technique of diffusive gradients in thin films (DGT) is often employed to quantify labile metals in situ; however, it is a challenge to perform the measurements in-field. This study evaluated the capability of field-portable X-ray fluorescence (FP-XRF) to swiftly generate elemental speciation information with DGT. Biologically available metal ions in environmental samples passively preconcentrate in the thin films of DGT devices, providing an ideal and uniform matrix for XRF nondestructive detection. Strong correlation coefficients (r > 0.992 for Mn, Cu, Zn, Pb and As) were obtained for all elements during calibration. The limits of quantitation (LOQ) for the investigated elements of FP-XRF on DGT devices are 2.74 for Mn, 4.89 for Cu, 2.89 for Zn, 2.55 for Pb, and 0.48 for As (unit: µg cm(-2)). When Pb and As co-existed in the solution trials, As did not interfere with Pb detection when using Chelex-DGT. However, there was a significant enhancement of the Pb reading attributed to As when ferrihydrite binding gels were tested, consistent with Fe-oxyhydroxide surfaces absorbing large quantities of As. This study demonstrates the value of the FP-XRF technique to rapidly and nondestructively detect the metals accumulated in DGT devices, providing a new and simple diagnostic tool for on-site environmental monitoring of labile metals/metalloids
Resumo:
In this article the multibody simulation software package MADYMO for analysing and optimizing occupant safety design was used to model crash tests for Normal Containment barriers in accordance with EN 1317. The verification process was carried out by simulating a TB31 and a TB32 crash test performed on vertical portable concrete barriers and by comparing the numerical results to those obtained experimentally. The same modelling approach was applied to both tests to evaluate the predictive capacity of the modelling at two different impact speeds. A sensitivity analysis of the vehicle stiffness was also carried out. The capacity to predict all of the principal EN1317 criteria was assessed for the first time: the acceleration severity index, the theoretical head impact velocity, the barrier working width and the vehicle exit box. Results showed a maximum error of 6% for the acceleration severity index and 21% for theoretical head impact velocity for the numerical simulation in comparison to the recorded data. The exit box position was predicted with a maximum error of 4°. For the working width, a large percentage difference was observed for test TB31 due to the small absolute value of the barrier deflection but the results were well within the limit value from the standard for both tests. The sensitivity analysis showed the robustness of the modelling with respect to contact stiffness increase of ±20% and ±40%. This is the first multibody model of portable concrete barriers that can reproduce not only the acceleration severity index but all the test criteria of EN 1317 and is therefore a valuable tool for new product development and for injury biomechanics research.
Resumo:
Hardware designers and engineers typically need to explore a multi-parametric design space in order to find the best configuration for their designs using simulations that can take weeks to months to complete. For example, designers of special purpose chips need to explore parameters such as the optimal bitwidth and data representation. This is the case for the development of complex algorithms such as Low-Density Parity-Check (LDPC) decoders used in modern communication systems. Currently, high-performance computing offers a wide set of acceleration options, that range from multicore CPUs to graphics processing units (GPUs) and FPGAs. Depending on the simulation requirements, the ideal architecture to use can vary. In this paper we propose a new design flow based on OpenCL, a unified multiplatform programming model, which accelerates LDPC decoding simulations, thereby significantly reducing architectural exploration and design time. OpenCL-based parallel kernels are used without modifications or code tuning on multicore CPUs, GPUs and FPGAs. We use SOpenCL (Silicon to OpenCL), a tool that automatically converts OpenCL kernels to RTL for mapping the simulations into FPGAs. To the best of our knowledge, this is the first time that a single, unmodified OpenCL code is used to target those three different platforms. We show that, depending on the design parameters to be explored in the simulation, on the dimension and phase of the design, the GPU or the FPGA may suit different purposes more conveniently, providing different acceleration factors. For example, although simulations can typically execute more than 3x faster on FPGAs than on GPUs, the overhead of circuit synthesis often outweighs the benefits of FPGA-accelerated execution.
Resumo:
This paper presents a portable electrochemical instrument capable of detecting and identifying heavy metals in soil, in situ. The instrument has been developed for use in a variety of situations to facilitate contaminated land surveys, avoiding expensive and time-consuming procedures. The system uses differential pulse anodic stripping voltammetry which is a precise and sensitive analytical method with excellent limits of detection. The identification of metals is based on a statistical microprocessor-based method. The instrument is capable of detecting six different toxic metals (lead, cadmium, zinc, nickel, mercury and copper) with good sensitivity
Resumo:
This paper presents a study of the residual strength of Pinus sylvestris, which has been subject to attack by the furniture beetle (Anobium punctatum). It is relatively easy to stop the infestation, but difficult to assess the structural soundness of the remaining timber. Removal and replacement of affected structural elements is usually difficult and expensive, particularly in buildings of historic interest. Current on-site assessment procedures are limited. The main object of the study was to develop an on-site test of timber quality: a test which can be carried out on the surface and also at varying depths into the timber. It is based on a probe pull-out technique using a portable load-measuring device. Pull-out force values have been correlated with both strength and energy absorbed as measured by compression testing on laboratory samples of both sound and infested timber. These two relationships are significant and could be used to assess whether remedial work is needed. In addition, work on the use of artificial borings to simulate the natural worming of timber is presented and the findings discussed.
Resumo:
Architectures and methods for the rapid design of silicon cores for implementing discrete wavelet transforms over a wide range of specifications are described. These architectures are efficient, modular, scalable, and cover orthonormal and biorthogonal wavelet transform families. They offer efficient hardware utilization by exploiting a number of core wavelet filter properties and allow the creation of silicon designs that are highly parameterized, including in terms of wavelet type and wordlengths. Control circuitry is embedded within these systems allowing them to be cascaded for any desired level of decomposition without any interface glue logic. The time to produce chip designs for a specific wavelet application is typically less than a day and these are comparable in area and performance to handcrafted designs. They are also portable across a wide range of silicon foundries and suitable for field programmable gate array and programmable logic data implementation. The approach described has also been extended to wavelet packet transforms.