223 resultados para Platelet Membrane Glycoproteins

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ß-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a biological and positional candidate gene for Alzheimer’s disease (AD). BACE1 is a protease that catalyses APP cleavage at the ß-secretase site. We evaluated all common and putatively functional polymorphisms in the genomic region encompassing BACE1 for an association with AD, and for functional effects on platelet ß-secretase activity. Tag SNPs (n = 10) derived from phase II of the International HapMap Project, and a nonsynonymous variant, were successfully genotyped in 901 Caucasian individuals from Northern Ireland using Sequenom iPLEX and TaqMan technologies. APOE genotyping was performed by PCR-RFLP. Platelet membrane ß-secretase activity was assayed in a subset of individuals (n = 311). Hardy–Weinberg equilibrium was observed for all variants. Evidence for an association with AD was observed with multi-marker haplotype analyses (P = 0.01), and with rs676134 when stratified for APOE genotype (P = 0.02), however adjusting for multiple testing negated the evidence for association of this variant with AD. ?2 analysis of genotype and allele frequencies in cases versus controls for individual SNPs revealed no evidence for association (5% level). No genetic factors were observed that significantly influenced platelet membrane ß-secretase activity. We have selected an appropriate subset of variants suitable for comprehensive genetic investigation of the BACE1 gene. Our results suggest that common BACE1 polymorphisms and putatively functional variants have no significant influence on genetic susceptibility to AD, or platelet ß-secretase activity, in this Caucasian Northern Irish population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta-site amyloid precursor protein cleaving enzyme (BACE1) is the rate-limiting enzyme for production of beta-amyloid peptides (A beta), which are proposed to drive the pathological changes found in Alzheimer's disease (AD). Reticulon 3 (RTN3) is a negative modulator of BACE1 (beta-secretase) proteolytic activity, while peptidylprolyl isomerase (cyclophilin)-like 2 (PPIL2) positively regulates BACE1 expression. The present study investigated whether there was any association between genetic variation in RTN3 and PPIL2, and either risk for AD, or levels of platelet beta-secretase activity, in a large Northern Irish case-control sample. Four hundred and sixty-nine patients with a diagnosis of probable AD (NINCDS-ADRDA criteria) and 347 control individuals (MMSE > 28/30) were genotyped. SNPs in both genes were selected by downloading genotype data from the International HapMap Project (Phase II) and tags selected using multimarker approach in Haploview, where r (2) > 0.8 and LOD > 3.0. Non-synonymous SNPs of interest were also included. Genotyping was performed by Sequenom iPLEX and TaqMan technologies. Alleles, genotypes and multi-marker haplotypes were tested for association with AD, and platelet beta-secretase activities were measured for a subset of individuals (n = 231). Eight SNPs in RTN3 and 7 in PPIL2 were genotyped. We found no significant associations between allele, genotype or haplotype frequencies and risk of AD. Further, there was no effect of genotype on platelet membrane beta-secretase activity. We conclude that common or potentially functional genetic variation in these BACE1 interacting proteins does not affect platelet membrane beta-secretase activity or contribute to risk of AD in this population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Various platelet membrane glycoproteins have been proposed as receptors for collagen, in some cases as receptors For specific collagen types. In this study we have compared the ability of a range of collagen types to activate platelets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A critical role for the conserved -integrin cytoplasmic motif, KVGFFKR, is recognized in the regulation of activation of the platelet integrin IIb3. To understand the molecular mechanisms of this regulation, we sought to determine the nature of the protein interactions with this cytoplasmic motif. We used a tagged synthetic peptide, biotin-KVGFFKR, to probe a high density protein expression array (37,200 recombinant human proteins) for high affinity interactions. A number of potential integrin-binding proteins were identified. One such protein, a chloride channel regulatory protein, ICln, was characterized further because its affinity for the integrin peptide was highest as was its expression in platelets. We verified the presence of ICln in human platelets by PCR, Western blots, immunohistochemistry, and its co-association with IIb3 by surface plasmon resonance. The affinity of this interaction was 82.2 ± 24.4 nM in a cell free assay. ICln co-immunoprecipitates with IIb3 in platelet lysates demonstrating that this interaction is physiologically relevant. Furthermore, immobilized KVGFFKR peptides, but not control KAAAAAR peptides, specifically extract ICln from platelet lysates. Acyclovir (100 µM to 5 mM), a pharmacological inhibitor of the ICln chloride channel, specifically inhibits integrin activation (PAC-1 expression) and platelet aggregation without affecting CD62 P expression confirming a specific role for ICln in integrin activation. In parallel, a cell-permeable peptide corresponding to the potential integrin-recognition domain on ICln (AKFEEE, 10–100 µM) also inhibits platelet function. Thus, we have identified, verified, and characterized a novel functional interaction between the platelet integrin and ICln, in the platelet membrane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To determine the clinical effect of dietary supplementation with low-dose ?-3-polyunsaturated fatty acids on disease activity and endothelial function in patients with systemic lupus erythematosus. Methods: A 24-week randomised double-blind placebo-controlled parallel trial of the effect of 3 g of ?-3-polyunsaturated fatty acids on 60 patients with systemic lupus erythematosus was performed. Serial measurements of disease activity using the revised Systemic Lupus Activity Measure (SLAM-R) and British Isles Lupus Assessment Group index of disease activity for systemic lupus erythematosus (BILAG), endothelial function using flow-mediated dilation (FMD) of the brachial artery, oxidative stress using platelet 8-isoprostanes and analysis of platelet membrane fatty acids were taken at baseline, 12 and 24 weeks. Results: In the fish oil group there was a significant improvement at 24 weeks in SLAM-R (from 9.4 (SD 3.0) to 6.3 (2.5), p

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Schizophrenia is clinically heterogeneous and multidimensional, but it is not known whether this is due to etiological heterogeneity. Previous studies have not consistently reported association between any specific polymorphisms and clinical features of schizophrenia, and have primarily used case-control designs. We tested for the presence of association between clinical features and polymorphisms in the genes for the serotonin 2A receptor (HT2A), dopamine receptor types 2 and 4, dopamine transporter (SLC6A3), and brain-derived neurotrophic factor (BDNF). Two hundred seventy pedigrees were ascertained on the basis of having two or more members with schizophrenia or poor outcome schizoaffective disorder. Diagnoses were made using a structured interview based on the SCID. All patients were rated on the major symptoms of schizophrenia scale (MSSS), integrating clinical and course features throughout the course of illness. Factor analysis revealed positive, negative, and affective symptom factors. The program QTDT was used to implement a family-based test of association for quantitative traits, controlling for age and sex. We found suggestive evidence of association between the His452Tyr polymorphism in HT2A and affective symptoms (P = 0.02), the 172-bp allele of BDNF and negative symptoms (P = 0.04), and the 480-bp allele in SLC6A3 (= DAT1) and negative symptoms (P = 0.04). As total of 19 alleles were tested, we cannot rule out false positives. However, given prior evidence of involvement of the proteins encoded by these genes in psychopathology, our results suggest that more attention should be focused on the impact of these alleles on clinical features of schizophrenia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) are crucial in the innate immune response to pathogens, in that they recognize and respond to pathogen associated molecular patterns, which leads to activation of intracellular signaling pathways and altered gene expression. Vaccinia virus (VV), the poxvirus used to vaccinate against smallpox, encodes proteins that antagonize important components of host antiviral defense. Here we show that the VV protein A52R blocks the activation of the transcription factor nuclear factor kappa B (NF-kappa B) by multiple TLRs, including TLR3, a recently identified receptor for viral RNA. A52R associates with both interleukin 1 receptor-associated kinase 2 (IRAK2) and tumor necrosis factor receptor-associated factor 6 (TRAF6), two key proteins important in TLR signal transduction. Further, A52R could disrupt signaling complexes containing these proteins. A virus deletion mutant lacking the A52R gene was attenuated compared with wild-type and revertant controls in a murine intranasal model of infection. This study reveals a novel mechanism used by VV to suppress the host immunity. We demonstrate viral disabling of TLRs, providing further evidence for an important role for this family of receptors in the antiviral response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recognition of microbial pathogens by the innate immune system involves Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns. Different TLRs recognize different pathogen-associated molecular patterns, with TLR-4 mediating the response to lipopolysaccharide from Gram-negative bacteria. All TLRs have a Toll/IL-1 receptor (TIR) domain, which is responsible for signal transduction. MyD88 is one such protein that contains a TIR domain. It acts as an adapter, being involved in TLR-2, TLR-4 and TLR-9 signalling; however, our understanding of how TLR-4 signals is incomplete. Here we describe a protein, Mal (MyD88-adapter-like), which joins MyD88 as a cytoplasmic TIR-domain-containing protein in the human genome. Mal activates NF-kappaB, Jun amino-terminal kinase and extracellular signal-regulated kinase-1 and -2. Mal can form homodimers and can also form heterodimers with MyD88. Activation of NF-kappaB by Mal requires IRAK-2, but not IRAK, whereas MyD88 requires both IRAKs. Mal associates with IRAK-2 by means of its TIR domain. A dominant negative form of Mal inhibits NF-kappaB, which is activated by TLR-4 or lipopolysaccharide, but it does not inhibit NF-kappaB activation by IL-1RI or IL-18R. Mal associates with TLR-4. Mal is therefore an adapter in TLR-4 signal transduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Macrophage inhibitory cytokine-1 (MIC-1) is a multifunctional cytokine produced in high amounts by placental tissue. Inhibiting trophoblast invasion and suppressing inflammation through inhibition of macrophage activation, MIC-1 is thought to provide pleiotropic functions in the establishment and maintenance of pregnancy. So far, little is known about the decidual cell subsets producing MIC-1 and the effect of this cytokine on dendritic cells (DCs), which are known to play a distinct role in the development of pro-fetal tolerance in pregnancy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Müllerian inhibiting substance (MIS), a member of the transforming growth factor-beta superfamily, induces regression of the Müllerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G(1) phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFkappaB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IkappaBalpha expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFkappaB signaling pathway was required for these processes. These results identify the NFkappaB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Retrograde transport links early/recycling endosomes to the trans-Golgi network (TGN), thereby connecting the endocytic and the biosynthetic/secretory pathways. To determine how internalized molecules are targeted to the retrograde route, we have interfered with the function of clathrin and that of two proteins that interact with it, AP1 and epsinR. We found that the glycosphingolipid binding bacterial Shiga toxin entered cells efficiently when clathrin expression was inhibited. However, retrograde transport of Shiga toxin to the TGN was strongly inhibited. This allowed us to show that for Shiga toxin, retrograde sorting on early/recycling endosomes depends on clathrin and epsinR, but not AP1. EpsinR was also involved in retrograde transport of two endogenous proteins, TGN38/46 and mannose 6-phosphate receptor. In conclusion, our work reveals the existence of clathrin-independent and -dependent transport steps in the retrograde route, and establishes a function for clathrin and epsinR at the endosome-TGN interface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tumor recurrence after curative resection remains a major problem in patients with locally advanced colorectal cancer treated with adjuvant chemotherapy. Genetic single-nucleotide polymorphisms (SNP) may serve as useful molecular markers to predict clinical outcomes in these patients and identify targets for future drug development. Recent in vitro and in vivo studies have demonstrated that the plastin genes PLS3 and LCP1 are overexpressed in colon cancer cells and play an important role in tumor cell invasion, adhesion, and migration. Hence, we hypothesized that functional genetic variations of plastin may have direct effects on the progression and prognosis of locally advanced colorectal cancer. We tested whether functional tagging polymorphisms of PLS3 and LCP1 predict time to tumor recurrence (TTR) in 732 patients (training set, 234; validation set, 498) with stage II/III colorectal cancer. The PLS3 rs11342 and LCP1 rs4941543 polymorphisms were associated with a significantly increased risk for recurrence in the training set. PLS3 rs6643869 showed a consistent association with TTR in the training and validation set, when stratified by gender and tumor location. Female patients with the PLS3 rs6643869 AA genotype had the shortest median TTR compared with those with any G allele in the training set [1.7 vs. 9.4 years; HR, 2.84; 95% confidence interval (CI), 1.32-6.1; P = 0.005] and validation set (3.3 vs. 13.7 years; HR, 2.07; 95% CI, 1.09-3.91; P = 0.021). Our findings suggest that several SNPs of the PLS3 and LCP1 genes could serve as gender- and/or stage-specific molecular predictors of tumor recurrence in stage II/III patients with colorectal cancer as well as potential therapeutic targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE:
Patients with type 2 diabetes mellitus (T2DM) are at increased risk of developing cardiovascular disease, largely as a result of defective production of cardioprotective nitric oxide and a concomitant rise in oxidative stress. Dietary interventions that could reverse this trend would be extremely beneficial. Here we investigated whether dietary n-3 polyunsaturated fatty acid (n-3 PUFA) supplementation positively affected platelet nitroso-redox imbalance.
RESEARCH DESIGN AND METHODS:
We randomized hypertensive T2DM patients (T2DM HT; n = 22) and age-and-sex matched hypertensive study participants without diabetes (HT alone; n = 23) in a double-blind, crossover fashion to receive 8 weeks of n-3 PUFAs (1.8 g eicosapentaenoic acid and 1.5 g docosahexaenoic acid) or identical olive oil capsules (placebo), with an intervening 8-week washout period. Platelet nitrite and superoxide were measured and compared before and after treatment; 8-isoprostane was determined by ELISA and subcellular compartmentalization of the NAD(P)H oxidase subunit p47-phox examined by Western blotting.
RESULTS:
The n-3 PUFA supplementation reduced 8-isoprostane and superoxide levels in platelets from T2DM HT, but not HT alone, participants, without effect on nitrite production. This coincided with a significant decrease in p47-phox membrane localization and a similar reduction in superoxide to that achieved with apocynin. At baseline, a subcohort of T2DM HT and HT alone participants showed evidence of nitric oxide synthase (NOS)-derived superoxide production, indicating defective enzymatic activity. This was reversed significantly in T2DM HT participants after treatment, demonstrating improved NOS function.
CONCLUSIONS:
Our finding that n-3 PUFAs diminish platelet superoxide production in T2DM HT patients in vivo suggests a therapeutic role for these agents in reducing the vascular-derived oxidative stress associated with diabetes.