137 resultados para Operational capacity
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
A power and resource efficient ‘dynamic-range utilisation’ technique to increase operational capacity of DSP IP cores by exploiting redundancy in the data epresentation of sampled analogue input data, is presented. By cleverly partitioning dynamic-range into separable processing threads, several data streams are computed concurrently on the same hardware. Unlike existing techniques which act solely to reduce power consumption due to sign extension, here the dynamic range is exploited to increase operational capacity while still achieving reduced power consumption. This extends an existing system-level, power efficient framework for the design of low power DSP IP cores, which when applied to the design of an FFT IP core in a digital receiver system gives an architecture requiring 50% fewer multipliers, 12% fewer slices and 51%-56% less power.
Resumo:
Exploiting the underutilisation of variable-length DSP algorithms during normal operation is vital, when seeking to maximise the achievable functionality of an application within peak power budget. A system level, low power design methodology for FPGA-based, variable length DSP IP cores is presented. Algorithmic commonality is identified and resources mapped with a configurable datapath, to increase achievable functionality. It is applied to a digital receiver application where a 100% increase in operational capacity is achieved in certain modes without significant power or area budget increases. Measured results show resulting architectures requires 19% less peak power, 33% fewer multipliers and 12% fewer slices than existing architectures.
Resumo:
Purpose – The Six Sigma approach to business improvement has emerged as a phenomenon in both the practitioner and academic literature with potential for achieving increased competitiveness and contributing. However, there is a lack of critical reviews covering both theory and practice. Therefore, the purpose of this paper is to critically review the literature of Six Sigma using a consistent theoretical perspective, namely absorptive capacity.
Design/methodology/approach – The literature from peer-reviewed journals has been critically reviewed using the absorptive capacity framework and dimensions of acquisition, assimilation, transformation, and exploitation.
Findings – There is evidence of emerging theoretical underpinning in relation to Six Sigma borrowing from an eclectic range of organisational theories. However, this theoretical development lags behind practice in the area. The development of Six Sigma in practice is expanding mainly through more rigorous studies and applications in service-based environments (profit and not for profit). The absorptive capacity framework is found to be a useful overarching framework within which to situate existing theoretical and practice studies.
Research limitations/implications – Agendas for further research from the critical review, in relation to both theory and practice, have been established in relation to each dimension of the absorptive capacity framework.
Practical implications – The paper shows that Six Sigma is both a strategic and operational issue and that focussing solely on define, measure, analyse, improve control-based projects can limit the strategic effectiveness of the approach within organisations.
Originality/value – Despite the increasing volume of Six Sigma literature and organisational applications, there is a paucity of critical reviews which cover both theory and practice and which suggest research agendas derived from such reviews.
Resumo:
There is considerable disagreement in the literature on available oxygen storage capacity, and on the reaction rates associated with the storage process, for three-way automotive catalysts. This paper seeks to address the issue of oxygen storage capacity in a clear and precise manner. The work described involved a detailed investigation of oxygen storage capacity in typical samples of automotive catalysts. The capacity has also been precisely defined and estimates have been made of the specific capacity based on catalyst dimensions. A purpose-built miniature catalyst test rig has been assembled to allow measurement of the capacity and the experimental procedure has been developed to ensure accurate measurement. The measurements from the first series of experiments have been compared with the theoretical calculations and good agreement is seen. A second series of experiments allowed the effect of temperature on oxygen storage capacity to be investigated. This work shows very clearly the large variation of the capacity with temperature.
Resumo:
Objective: This study investigated whether differences exist in atherogen-induced migratory behaviors and basal antioxidant enzyme capacity of vascular smooth muscle cells (VSMC) from human coronary (CA) and internal mammary (IMA) arteries. Methods: Migration experiments were performed using the Dunn chemotaxis chamber. The prooxidant [NAD(P)H oxidase] and antioxidant [NOS, superoxide dismutase, catalase and glutathione peroxidase] enzyme activities were determined by specific assays. Results: Chemotaxis experiments revealed that while both sets of VSMC migrated towards platelet-derived growth factor-BB (1-50 ng/ml) and angiotensin II (1-50 nM), neither oxidized-LDL (ox-LDL, 25-100 ng/ml) nor native LDL (100 ng/ml) affected chemotaxis in IMA VSMC. However, high dose ox-LDL produced significant chemotaxis in CAVSMC that was inhibited by pravastatin (100 nM), mevastatin (10 nM), losartan (10 nM), enalapril (1 micro.M), and MnTBAP (a free radical scavenger, 50 micro.M). Microinjection experiments with isoprenoids i.e. geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) showed distinct involvement of small GTPases in atherogeninduced VSMC migration. Significant increases in antioxidant enzyme activities and nitrite production along with marked decreases in NAD(P)H oxidase activity and superoxide levels were determined in IMA versus CA VSMC. Conclusions: Enhanced intrinsic antioxidant capacity may confer on IMAVSMC resistance to migration against atherogenic agents. Drugs that regulate ox-LDL or angiotensin II levels also exert antimigratory effects.