3 resultados para OPTICAL PHONONS

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fabricated one-dimensional (1D) materials often have abundant structural defects. Experimental observation and numerical calculation indicate that the broken translation symmetry due to structural defects may play a more important role than the quantum confinement effect in the Raman features of optical phonons in polar semiconductor quantum wires such as SiC nanorods, (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This Letter reports in situ Fourier transform infrared (FTIR) spectroscopic data on thermal TiO films fabricated by heating titanium plates in air at 475, 700 and 800 °C. The films were studied in the dark and under UV-irradiation in aqueous 0.1MNaClO in the presence and absence of 0.1 M Na(OOC) and at 10, 25 and 50 °C. The film fabricated at 800 °C showed a broad feature near 1580cm under UV-irradiation that was not observed in the dark, whilst the films fabricated at lower temperatures, 475 and 700 °C, showed no such feature. This feature appears to be associated with the accumulation of surface-mobile holes at the complex, porous film-electrolyte interface and the capacity of such holes to enhance the absorption cross-section of optical phonons characteristic of the rutile crystal form at and near the surface of the TiO/electrolyte interface. © 2001 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The -phonons of KH2PO4 (KDP) and its deuterated analog DKDP are studied via first-principles linear response calculations. The paraelectric phase shows two instabilities. One for a z-polarized mode, which leads to the spontaneous polarization Ps of the ferroelectric phase. The other corresponds to a two-fold degenerate xy-polarized mode. Other phonons are analyzed, which couple to the ferroelectric one at large amplitudes and are relevant for the ferroelectric transition. We show that Ps is mainly of electronic nature, since it arises mostly from an off-diagonal component of the Born effective charge tensor of H, with minor contribution from P atoms displacements.