29 resultados para OPTICAL CHARACTERIZATION

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on the fabrication and optical characterization of a three-dimensional (3D) photonic crystal on the basis of macroporous silicon. The structure consists of a 2D array of air pores in silicon whose diameter is varied (modulated) periodically with depth. The bandstructure of the resulting 3D hexagonal photonic crystal is calculated and compared with transmission measurements. The described structure allows to adjust the dispersion relation along the pore axis almost independently from the dispersion relation in the plane perpendicular to the pore axis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An effective ellipsometric technique to determine parameters that characterize second-harmonic optical and magneto-optical effects in centrosymmetric media within the electric-dipole approximation is proposed and outlined in detail. The parameters, which are ratios of components of the nonlinear-surface-susceptibility tensors, are obtained from experimental data related to the state of polarization of the second-harmonic-generated radiation as a function of the angle between the plane of incidence and the polarization plane of the incident, linearly polarized, fundamental radiation. Experimental details of the technique are described. A corresponding theoretical model is given as an example for a single isotropic surface assuming polycrystalline samples. The surfaces of air-Au and air-Ni (in magnetized and demagnetized states) have been investigated ex situ in ambient air, and the results are presented. A nonlinear, least-squares-minimization fitting procedure between experimental data and theoretical formulas has been shown to yield realistic, unambiguous results for the ratios corresponding to each of the above materials. Independent methods for verifying the validity of the fitting parameters are also presented. The influence of temporal variations at the surfaces on the state of polarization (due to adsorption, contamination, or oxidation) is also illustrated for the demagnetized air-Ni surface. (C) 2005 Optical Society of America

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ceria (CeO2) is a technologically important rare earth material because of its unique properties and various engineering and biological applications. A facile and rapid method has been developed to prepare ceria nanoparticles using microwave with the average size 7 nm in the presence of a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the nanoparticles were determined in depth with X-ray powder diffraction, transmission electron microscope, N-2 adsorption-desorption technique, dynamic light scattering (DLS) analysis, FTIR spectroscopy, Raman spectroscopy, UV-vis absorption spectroscopy, and Diffuse reflectance spectroscopy. The energy band gap measurements of nanoparticles of ceria have been carried out by UV-visible absorption spectroscopy and diffuse reflectance spectroscopy. The surface charge properties of colloidal ceria dispersions in ethylene glycol have been also studied. To the best of our knowledge, this is the first report on using this type of ionic liquids in ceria nanoparticle synthesis. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PtSi/Si Schottky junctions, fabricated using a conventional technique of Pt deposition with a subsequent thermal anneal, are examined using X-ray diffraction, atomic force microscopy and a novel prism/gap/sample optical coupling system. With the aid of X-ray diffraction and atomic farce microscopy it is shown that a post-anneal etch in aqua regia is essential for the removal of an unreacted, rough surface layer of Pt, to leave a much smoother PtSi film. The prism/gap/sample or Otto coupling rig is mounted in a small UHV chamber and has facilities for remote variation of the gap (by virtue of a piezoactuator system) and variation of the temperature in the range of similar to 300 K - 85 K. The system is used to excite surface plasmon polaritons on the outer surface of the PtSi and thus produce sensitive optical characterisation as a function of temperature. This is performed in order to yield an understanding of the temperature dependence of phonon and interface scattering of carriers in the PtSi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. The purpose of this study is to demonstrate the rational design and behaviour of the first dual mode optical and chemical prodrug, exemplified by an acetyl salicylic acid-based system. Methods. A cyclic 1,4-benzodioxinone prodrug was synthesised by reaction of 3,5-dimethoxybenzoin and acetyl salicoyl chloride with pyridine. After purification by column chromatography and recrystallization, characterization was achieved using infrared and NMR spectroscopies, mass spectrometry, elemental analysis and single crystal X-ray diffraction. Light-triggered drug liberation was characterised via UV-visible spectroscopy following low-power 365 nm irradiation for controlled times. Chemical drug liberation was characterised via UV-visible spectroscopy in pH 5.5 solution. Results. The synthetic method yielded pure prodrug, with full supporting characterisation. Light-triggered drug liberation proceeded at a rate of 8.30 10j2 sj1, while chemical, hydrolytic liberation proceeded independently at 1.89 10j3 sj1. The photochemical and hydrolytic reactions were both quantitative. Conclusions. This study demonstrates the first rational dual-mode optical and chemical prodrug, using acetyl salicylic acid as a model, acting as a paradigm for future dual-mode systems. Photochemical drug liberation proceeds 44 times faster than chemical liberation, suggesting potential use in drug-eluting medical devices where an additional burst of drug is required at the onset of infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the dynamics of a movable mirror in a Fabry-Perot cavity coupled through radiation pressure to the cavity field and in contact with a thermal bath at finite temperature. In contrast to previous approaches, we consider arbitrary values of the effective detuning between the cavity and an external input field. We analyse the radiation-pressure effect on the Brownian motion of the mirror and its significance in the density noise spectrum of the output cavity field. Important properties of the mirror dynamics can be gathered directly from this noise spectrum. The presented reconstruction provides an experimentally useful tool in the characterization of the energy and rigidity of the mirror as modified by the coupling with light. We also give a quantitative analysis of the recent experimental observation of self-cooling of a micromechanical oscillator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dielectric barrier discharge (DBD) generated by flowing helium between the parallel-plate electrodes of an open air reactor has been characterized using time resolved optical and electrical measurements. A sinusoidal voltage of up to 5 kV (peak to peak) of frequencies from 3 to 50 kHz has been applied to the discharge electrodes. The helium flow rate is varied up to 10 litre min(-1). The adjustment of flow rate allows the creation of uniform DBDs with optimized input power equal to 120 +/- 10 mW cm(-3). At flow rates from 4 to 6 litre min(-1) a uniform DBD is obtained. The maxima in the line intensities of N-2(+) and helium at 391.4 nm and 706.5 nm, respectively, 2 under those conditions indicate the importance of helium metastables and He-2(+) in sustaining such a discharge. The power efficiency and discharge 2 current show maxima when the DBD In He/air is uniform. The gas temperature during the discharge has been measured as 360 +/- 20 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aromatic monomers can be polymerised using the chloroaluminate room temperature melt obtained by mixing 1:2 ratio of cetyl pyridinium chloride and anhydrous aluminium chloride miscible in all proportions with organic solvents as an electrolyte. The chloroaluminate (AlCl4-) anion generated in this melt having a tetrahedral symmetry with equal bond lengths and bond angles is the dopant to stabilize macrocation generated near the vicinity of anode to yield better conducting and better ordered electronically conducting free standing polymer film. In this communication, we discuss the polymers derived from benzene and pyrrole and their characterization by various techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Freestanding polyparaphenylene films were obtained on polymerization of benzene at potential of 1.2 V versus Al wire on substrates like platinum/transparent conducting glass as an anode. The electrolyte used was chloroaluminate room-temperature melt, which was prepared by intimate mixing of a 1:2 ratio of cetyl pyridinium chloride and anhydrous aluminum chloride to yield a viscous liquid. This liquid was miscible in all proportions with benzene and other aromatic hydrocarbons in all proportions at room temperature. The polyparaphenylene films deposited on platinum anode exhibited a prominent cyclic voltammetric peak at 0.7 V versus Al wire as reference electrode in chloroaluminate medium. The impedance spectra gave low charge transfer resistance. The diffused reflectance electronic spectra of the film gave the peaks at 386 nm and 886 nm. The PPP films showed electronic conductivity around 3–4 × 104 S/cm by four probe method under nitrogen atmosphere. The polymer was also characterized by IR spectra, thermal studies, and SEM studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthesis of free standing conducting polypyrrole film using room temperature melt as the electrolyte is reported. We also report variation in the contribution of ionic conductance with temperature of the polymer film by four probe method and electrochemical properties like diffusion coefficient and ionic mobility of AlCl-4 doped polypyrrole film. An attempt has been made to arrive at the stability of charge carrier concentration over a temperature range of 295 to 350 K under vacuum. The film was characterized by optical techniques and scanning electron micrography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.