124 resultados para N-of-1 Trials
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Background: Greater dietary intakes of n–3 long-chain polyunsaturated fatty acids (n–3 PUFAs) may be beneficial for depressed mood. Objective: This study aimed to systematically review all published randomized controlled trials investigating the effects of n–3 PUFAs on depressed mood. Design: Eight medical and health databases were searched over all years of records until June 2006 for trials that exposed participants to n–3 PUFAs or fish, measured depressed mood, were conducted on human participants, and included a comparison group. Results: Eighteen randomized controlled trials were identified; 12 were included in a meta-analysis. The pooled standardized difference in mean outcome (fixed-effects model) was 0.13 SDs (95% CI: 0.01, 0.25) in those receiving n–3 PUFAs compared with placebo, with strong evidence of heterogeneity (I2 = 79%, P <0.001). The presence of funnel plot asymmetry suggested that publication bias was the likely source of heterogeneity. Sensitivity analyses that excluded one large trial increased the effect size estimates but did not reduce heterogeneity. Metaregression provided some evidence that the effect was stronger in trials involving populations with major depression—the difference in the effect size estimates was 0.73 (95% CI: 0.05, 1.41; P = 0.04), but there was still considerable heterogeneity when trials that involved populations with major depression were pooled separately (I2 = 72%, P <0.001). Conclusions: Trial evidence that examines the effects of n–3 PUFAs on depressed mood is limited and is difficult to summarize and evaluate because of considerable heterogeneity. The evidence available provides little support for the use of n–3 PUFAs to improve depressed mood. Larger trials with adequate power to detect clinically important benefits are required.
Resumo:
The first definitive high-resolution single-crystal X-ray structure for the coordination of the 1-methylimidazole (Meimid) ligand to UO2(Ac)2 (Ac = CH3CO2) is reported. The crystal structure evidence is confirmed by IR, Raman, and UV-vis spectroscopic data. Direct participation of the nitrogen atom of the Meimid ligand in binding to the uranium center is confirmed. Structural analysis at the DFT (B3LYP) level of theory showed a conformational difference of the Meimid ligand in the free gas-phase complex versus the solid state due to small energetic differences and crystal packing effects. Energetic analysis at the MP2 level in the gas phase supported stronger Meimid binding over H2O binding to both UO2(Ac)2 and UO2(NO3)2. In addition, self-consistent reaction field COSMO calculations were used to assess the aqueous phase energetics of combination and displacement reactions involving H2O and Meimid ligands to UO2R2 (R = Ac, NO3). For both UO2(NO3)2 and UO2(Ac)2, the displacement of H2O by Meimid was predicted to be energetically favorable, consistent with experimental results that suggest Meimid may bind uranyl at physiological pH. Also, log(Knitrate/KAc) calculations supported experimental evidence that the binding stoichiometry of the Meimid ligand is dependent upon the nature of the reactant uranyl complex. These results clearly demonstrate that imidazole binds to uranyl and suggest that binding of histidine residues to uranyl could occur under normal biological conditions.
Resumo:
The accuracy and reliability of popular density functional approximations for the compounds giving origin to room temperature ionic liquids have been assessed by computing the T=0 K crystal structure of several 1-alkyl-3-methyl-imidazolium salts. Two prototypical exchange-correlation approximations have been considered, i.e., the local density approximation (LDA) and one gradient corrected scheme [PBE-GGA, Phys. Rev. Lett. 77, 3865 (1996)]. Comparison with low-temperature x-ray diffraction data shows that the equilibrium volume predicted by either approximations is affected by large errors, nearly equal in magnitude (~10%), and of opposite sign. In both cases the error can be traced to a poor description of the intermolecular interactions, while the intramolecular structure is fairly well reproduced by LDA and PBE-GGA. The PBE-GGA optimization of atomic positions within the experimental unit cell provides results in good agreement with the x-ray structure. The correct system volume can also be restored by supplementing PBE-GGA with empirical dispersion terms reproducing the r-6 attractive tail of the van der Waals interactions.
Resumo:
A detailed investigation of the phase diagram of 1-butyl-3-methyl imidazolium hexafluorophosphate ([bmim][PF6]) is presented on the basis of a wide set of experimental data accessing thermodynamic, structural, and dynamical properties of this important room temperature ionic liquid (RTIL). The combination of quasi adiabatic, continuous calorimetry, wide angle neutron and X-ray diffraction, and quasi elastic neutron scattering allows the exploration of many novel features of this material. Thermodynamic and microscopic structural information is derived on both glassy and crystalline states and compared with results that recently appeared in the literature allowing direct information to be obtained on the existence of two crystalline phases that were not previously characterized and confirming the view that RTILs show a substantial degree of order (even in their amorphous states), which resembles the crystalline order. We highlight a strong connection between structure and dynamics, showing the existence of three temperature ranges in the glassy state across which both the spatial correlation and the dynamics change. The complex crystalline polymorphism in [bmim][PF6] also is investigated; we compare our findings with the corresponding findings for similar RTILs. These results provide a strong experimental basis for the exploration of the features of the phase diagram of RTILs and for the further study of longer alkyl chain salts.
Resumo:
A detailed investigation on the nature of the relaxation processes occurring in a typical room temperature ionic liquid (RTIL), namely, 1-butyl-3-methyl imidazolium hexafluorophosphate ([bmim][PF6]), is reported. The study was conducted using both elastic and inelastic neutron scattering over a wide temperature range from 10 to 400 K, accessing the dynamic features of both the liquid and glassy amorphous states. In this study, the inelastic fixed energy scan technique has been applied for the first time to this class of materials. Using this technique, the existence of two relaxation processes below the glass transition and a further diffusive process occurring above the glass-liquid transition are observed. The low temperature processes are associated with methyl group rotation and butyl chain relaxation in the glassy state and have been modeled in terms of two Debye-like, Arrhenius activated processes. The high temperature process has been modeled in terms of a Kohlraush-Williams-Watts relaxation, with a distinct Vogel-Fulcher-Tamman temperature dependence. These results provide novel information that will be useful in rationalizing the observed structural and dynamical behavior of RTILs in the amorphous state.
Resumo:
The properties of the 1-butyl-3-methylimidazolium salt of the dinuclear mu(4)-(O,O,O',O'-ethane-1,2-dioato)bis[bis-(nitrato-O,O)dioxouranate(VI)] anion have been investigated using electrochemistry, single-crystal X-ray crystallography, and extended X-ray absorbance fine structure spectroscopy: the anion structures from these last two techniques are in excellent agreement with each other. Electrochemical reduction of the complex leads to the a two-electron metal-centered reduction of U(VI) to U(IV), and the production Of UO2, or a complex containing UO2. Under normal conditions, this leads to the coating of the electrode with a passivating film. The presence of volatile organic compounds in the ionic liquids 1-alkyl-3-methylimidazolium nitrate (where the 1-alkyl chain was methyl, ethyl, propyl, butyl, pentyl, hexyl, dodecyl, hexadecyl, or octadecyl) during the oxidative dissolution of uranium(IV) oxide led to the formation of a yellow precipitate. To understand the effect of the cation upon the composition and structure of the precipitates, 1-alkyl-3-methylimidazolium salts of a number of nitratodioxouranate(VI) complexes were synthesized and then analyzed using X-ray crystallography. It was demonstrated that the length of the 1-alkyl chain played an important role, not only in the composition of the complex salt, but also in the synthesis of dinuclear anions containing the bridging mu(4)-(O,O,O',O'-ethane-1,2-dioato), or oxalato, ligand, by protecting it from further oxidation.
Resumo:
Using neutron and single crystal X-ray diffraction the structures of 1,3-dimethylimidazolim chloride and hexafluorophosphate salts have been determined in the liquid and the solid-state. The relative hydrogen bonding characteristics and sizes of the two anions force the ions to pack differently. In each case, a strong correlation between the crystal structure and liquid structure is found.
Resumo:
The structure of the 1-alkyl-3-methylimidazolium salts of the dinuclear mu(4)-(O,O,O',O'-ethane-1,2-dioato)-bis[bis(nitrato-O,O)dioxouranate(VI)] anion have been investigated using single crystal X-ray crystallography. In addition, EXAFS and electrochemical studies have been performed on the [C(4)mim](+) salt which is formed following the oxidative dissolution of uranium(IV) oxide in [C(4)mim][NO3]. EXAFS analysis of the solution following UO2 dissolution indicates a mixture of uranyl nitrate and mu(4)-(O,O,O',O'-ethane-1,2-dioato)-bis[bis(nitrato-O,O)dioxouranate(VI)] anions are formed.
Resumo:
The structure of liquid 1, 3-dimethylimidazolium hexafluorophosphate is described in detail and compared with the structure of 1, 3-dimethylimidazolium chloride. In each case, the data were obtained from neutron diffraction experiments and analysed using an empirical potential structure refinement process. Overall, the structures are similar; however, significant differences arise from the variation in anion size.
Resumo:
X-ray reflectivity measurements in air of thin films of 1-alkyl-3-methylimidazolium salts in the liquid, liquid crystalline and solid states supported on Si( 111) are described. The films show Bragg features in both liquid crystalline and solid phases, but only after an initial annealing cycle. Kiessig fringes are observed only for the 1-octadecyl-3-methyl-imidazolium hexafluorophosphate films and, following analysis using Parratt32, a bi-layer model is proposed whereby the molecules are orientated with ionic groups at both salt-air and salt-silicon interfaces.
Resumo:
Ionic liquids have received significant interest from both academia and industry for a wide range of applications which often requires knowledge of their thermophysical properties. Quantitative structure-property relationship correlations and group contribution methods for thermophysical properties of ionic liquids are a basic necessity for the development of computer aided molecular design approaches for these liquids and subsequently offer the potential for designing an ionic liquid having a desirable set of thermophysical properties. However, the limited availability of experimental thermophysical data and their quality have prevented the development of such tools. Based on previously reported experimental surface tension data, a correlation of the parachors with the molar volume of the ionic liquids has been developed. The predicted parachor values have been shown to be in good agreement with the experimental data. A maximum deviation of
Resumo:
1-Alkyl-n-cyanopyridinium and 1-alkyl-n-(trifluoromethyl) pyridinium salts have been synthesised and characterised in order to compare the effects of different electron-withdrawing functional groups on their ability to form ionic liquids. The presence of the electron-withdrawing nitrile or trifluoromethyl substituent on the pyridinium ring leads to salts with higher melting points than with the corresponding 1-alkylpyridinium or 1-alkylpicolinium cations. Solid-state structures were determined by single crystal X-ray crystallography for seven salts; 1-methyl-4-cyanopyridinium methylsulfate, and 1-methyl-3-cyanopyridinium, 1-methyl-4-cyanopyridinium, 1-ethyl-2-cyanopyridinium, 1-ethyl-3-cyanopyridinium, 1-ethyl-4-cyanopyridinium and 1-ethyl-4-(trifluormethyl) pyridinium bis{(trifluoromethyl) sulfonyl} imide, and show the effects of ring-substitution position on hydrogen-bonding in the solid-state and on melting points.