172 resultados para Mortar additive. Cellulose phosphate. HEMC
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Despite their widespread use, there is a paucity of information concerning the effect of storage on the rheological properties of pharmaceutical gels that contain organic and inorganic additives. Therefore, this study examined the effect of storage (1 month at either 4 or 37 degrees C) on the rheological and mechanical properties of gels composed of either hydroxypropylmethylcellulose (3-5% w/w, HPMC) or hydroxyethylcellulose (3-5% w/w, HEC) and containing or devoid of dispersed organic (tetracycline hydrochloride 2% w/w) or inorganic (iron oxide 0.1% w/w) agents. The mechanical properties were measured using texture profile analysis whereas the rheological properties were analyzed using continuous shear rheometry and modeled using the Power Law model. All formulations exhibited pseudoplastic flow with minimal thixotropy. Increasing polymer concentration (3-5% w/w) significantly increased the consistency, hardness, compressibility, and adhesiveness of the formulations due to increased polymer chain entanglement. Following storage (I month at 4 and 37 degrees C) the consistency and mechanical properties of additive free HPMC gets (but not HEC gels) increased, due to the time-dependent development of polymer chain entanglements. Incorporation of tetracycline hydrochloride significantly decreased and increased the rheological and mechanical properties of HPMC and HEC gels, respectively. Conversely, the incorporation of iron oxide did not affect these properties. Following storage, the rheological and mechanical properties of HPMC and HEC formulations were markedly compromised. This effect was greater following storage at 37 than at 4 degrees C and, additionally, greater in the presence of tetracycline hydrochloride than iron oxide. It is suggested that the loss of rheological/mechanical structure was due to chain depolymerization, facilitated by the redox properties of tetracycline hydrochloride and iron oxide. These observations have direct implications for the design and formulation of gels containing an active pharmaceutical ingredient. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Abstract 2,4-Dinitrophenol was employed with benzyloxy-bis-(diisopropylamino)phosphine to synthesise the cyclic phosphate derivatives of a series of alkane diols (HO–(CH2)n–OH, n=2–6) in good isolated yields. Tetrazole and DNP were compared by 31P NMR spectroscopy for their ability to catalyse the cyclisation at the P(III) stage. Investigation of the phosphate triester stability under various oxidation and chromatographic conditions resulted in the optimisation of the isolation procedures of the chemically unstable cyclic compounds. Conditions for debenzylation were developed to yield the corresponding cyclic phosphodiesters quantitatively. The methodology was further applied to the preparation and isolation of the cyclic phosphate derivative of a carbohydrate.
Resumo:
To investigate the possible biotechnological application of the phenomenon of low pH-inducible phosphate uptake and polyphosphate accumulation, previously reported using pure microbial cultures and under laboratory conditions, a 2000 L activated sludge pilot plant was constructed at a municipal sewage treatment works. When operated as a single-stage reactor this removed more than 60% of influent phosphate from primary settled sewage at a pH of 6.0, as opposed to approximately 30% at the typical operational pH for the works of 7.0-7.3-yet without any deleterious effect on other treatment parameters. At these pH values the phosphorus content of the sludge was, respectively, 4.2% and 2.0%. At pH 6.0 some 33.9% of sludge microbial cells were observed to contain polyphosphate inclusions; the corresponding value at pH 7.0 was 18.7%. Such a process may serve as a prototype for the development of alternative biological and chemical options for phosphate removal from wastewaters.
Resumo:
Nitrate and phosphate uptake mechanisms have been characterised under conditions of 100 and 50% seawater in 3 common brown algae of NW Europe: Fucus vesiculosus, F. serratus and Laminaria digitata. Under low salinity, the growth rate and internal nitrate accumulation of F. serratus significantly increased (20 and 48%, respectively), but no significant changes were observed for F. vesiculosus and L. digitata. However, nitrate uptake rates were reduced in L. digitata, so that this species was less adaptable to low salinity than the Fucus species. Both F. vesiculosus and F. serratus reached a steady-state uptake rate after acclimation regardless of the salinity treatment. All 3 species had a high capacity for storing inorganic N and P intracellularly. The results for F. serratus pointed to a dual mechanism of adaptation to the special characteristics of the intertidal environment where it grows. Non-saturating (low affinity) nitrate uptake and biphasic (double Michaelis-Menten curve) phosphate uptake are adaptations to high nutrient concentrations. Temporal partition of cellular energy for carbon metabolism and nutrient uptake is also suggested as an adaptation to the transient nutrient inputs occurring in these environments.
Resumo:
Uridine-3'-phosphorothiolate triesters bearing lipophilic moieties were prepared via Michaelis-Arbuzov chemistry. Subsequent deprotection of the S-cholesteryl phosphorothiolate triester afforded the corresponding diester which underwent spontaneous Cyclization to cleanly afford uridine 2',3'-cyclic phosphate. This transesterification reaction could be expedited by treatment with iodine under mild, neutral conditions.