42 resultados para Methods : N-body Simulations
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Aims. We use magnetic and non-magnetic 3D numerical simulations of solar granulation and G-band radiative diagnostics from the resulting models to analyse the generation of small-scale vortex motions in the solar photosphere.
Methods. Radiative MHD simulations of magnetoconvection are used to produce photospheric models. Our starting point is a non-magnetic model of solar convection, where we introduce a uniform magnetic field and follow the evolution of the field in the simulated photosphere. We find two different types of photospheric vortices, and provide a link between the vorticity generation and the presence of the intergranular magnetic field. A detailed analysis of the vorticity equation, combined with the G-band radiative diagnostics, allows us to identify the sources and observational signatures of photospheric vorticity in the simulated photosphere.
Results. Two different types of photospheric vorticity, magnetic and non-magnetic, are generated in the domain. Non-magnetic vortices are generated by the baroclinic motions of the plasma in the photosphere, while magnetic vortices are produced by the magnetic tension in the intergranular magnetic flux concentrations. The two types of vortices have different shapes. We find that the vorticity is generated more efficiently in the magnetised model. Simulated G-band images show a direct connection between magnetic vortices and rotary motions of photospheric bright points, and suggest that there may be a connection between the magnetic bright point rotation and small-scale swirl motions observed higher in the atmosphere.
Resumo:
Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 µm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 µm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. Conclusions: GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor.
Resumo:
Rotational molding suffers from a relatively long cycle time, which hampers more widespread growth of the process. During each cycle, both the polymer and mold must be heated from room temperature to above polymer melting temperature and subsequently cooled to room temperature. The cooling time in this process is relatively long due to the poor thermal conductivity of plastics. Although rapid external cooling is possible, internal cooling rates are the major limitation. This causes the process to be uneconomical for large production runs of small parts. Various researchers have strived to minimize cycle times by applying various internal cooling procedures. This article presents a review of these methods, including computer simulations and practical investigations published to date. The effects of cooling rate on the morphology, shrinkage, warpage, and impact properties of rotationally molded polyolefins are also highlighted. In general, rapid and symmetrical cooling across the mold results in smaller spherulite size, increased mechanical properties and less potential warpage or distortion in moldings. POLYM. ENG. SCI., 2011. ©2011 Society of Plastics Engineers.
Resumo:
The term fatigue loads on the Oyster Oscillating Wave Surge Converter (OWSC) is used to describe hydrostatic loads due to water surface elevation with quasi-static changes of state. Therefore a procedure to implement hydrostatic pressure distributions into finite element analysis of the structure is desired. Currently available experimental methods enable one to measure time variant water surface elevation at discrete locations either on or around the body of the scale model during tank tests. This paper discusses the development of a finite element analysis procedure to implement time variant, spatially distributed hydrostatic pressure derived from discretely measured water surface elevation. The developed method can process differently resolved (temporal and spatial) input data and approximate the elevation over the flap faces with user defined properties. The structural loads, namely the forces and moments on the body can then be investigated by post processing the numerical results. This method offers the possibility to process surface elevation or hydrostatic pressure data from computational fluid dynamics simulations and can thus be seen as a first step to a fluid-structure interaction model.
Resumo:
Presented is a study that expands the body of knowledge on the effect of in-cycle speed fluctuations on performance of small engines. It uses the methods developed previously by Callahan, et al. (1) to examine a variety of two-stroke engines and one four-stroke engine. The two-stroke engines were: a high performance single-cylinder, a low performance single-cylinder, a high performance multi-cylinder, and a medium performance multi-cylinder. The four-stroke engine was a high performance single-cylinder unit. Each engine was modeled in Virtual Engines, which is a fully detailed one-dimensional thermodynamic engine simulator. Measured or predicted in-cycle speed data were input into the engine models. Predicted performance changes due to drivetrain effects are shown in each case, and conclusions are drawn from those results. The simulations for the high performance single-cylinder two-stroke engine predicted significant in-cycle crankshaft speed fluctuation amplitudes and significant changes in performance when the fluctuations were input into the engine model. This was validated experimentally on a firing test engine based on a Yamaha YZ250. The four-stroke engine showed significant changes in predicted performance compared to the prediction with zero speed fluctuation assumed in the model. Measured speed fluctuations from a firing Yamaha YZ400F engine were applied to the simulation in addition to data from a simple free mass model. Both methods predicted similar fluctuation profiles and changes in performance. It is shown that the gear reduction between the crankshaft and clutch allowed for this similar behavior. The multi-cylinder, high performance two-stroke engine also showed significant changes in performance, in this case depending on the firing configuration. The low output two-stroke engine simulation showed only a negligible change in performance in spite of high amplitude speed fluctuations. This was due to its flat torque versus speed characteristic. The medium performance multi-cylinder two-stroke engine also showed only a negligible change in performance, in this case due to a relatively high inertia rotating assembly and multiple cylinder firing events within the revolution. These smoothed the net torque pulsations and reduced the amplitude of the speed fluctuation itself.
Resumo:
Currents across thin insulators are commonly taken as single electrons moving across classically forbidden regions; this independent particle picture is well-known to describe most tunneling phenomena. Examining quantum transport from a different perspective, i.e., by explicit treatment of electron-electron interactions, we evaluate different single particle approximations with specific application to tunneling in metal-molecule-metal junctions. We find maximizing the overlap of a Slater determinant composed of single-particle states to the many-body current-carrying state is more important than energy minimization for defining single-particle approximations in a system with open boundary conditions. Thus the most suitable single particle effective potential is not one commonly in use by electronic structure methods, such as the Hartree-Fock or Kohn-Sham approximations.
Resumo:
Background
Over the past ten years MRSA has become endemic in hospitals and is associated with increased healthcare costs. Critically ill patients are most at risk, in part because of the number of invasive therapies that they require in the intensive care unit (ICU). Washing with 5% tea tree oil (TTO) has been shown to be effective in removing MRSA on the skin. However, to date, no trials have evaluated the potential of TTO body wash to prevent MRSA colonization or infection. In addition, detecting MRSA by usual culture methods is slow. A faster method using a PCR assay has been developed in the laboratory, but requires evaluation in a large number of patients.
Methods/Design
This study protocol describes the design of a multicentre, phase II/III prospective open-label randomized controlled clinical trial to evaluate whether a concentration of 5% TTO is effective in preventing MRSA colonization in comparison with a standard body wash (Johnsons Baby Softwash) in the ICU. In addition we will evaluate the cost-effectiveness of TTO body wash and assess the effectiveness of the PCR assay in detecting MRSA in critically ill patients. On admission to intensive care, swabs from the nose and groin will be taken to screen for MRSA as per current practice. Patients will be randomly assigned to be washed with the standard body wash or TTO body wash. On discharge from the unit, swabs will be taken again to identify whether there is a difference in MRSA colonization between the two groups.
Discussion
If TTO body wash is found to be effective, widespread implementation of such a simple colonization prevention tool has the potential to impact on patient outcomes, healthcare resource use and patient confidence both nationally and internationally.
Trial Registration
[ISRCTN65190967]
Resumo:
Objectives. We investigated whether exposure to negative aspects of close relationships was associated with subsequent increase in body mass index (BMI) and waist circumference.
Methods. Data came from a prospective cohort study (Whitehall II) of 9425 civil servants aged 35 to 55 years at baseline (phase 1: 1985-1988). We assessed negative aspects of close relationships with the Close Persons Questionnaire (range 0-12) at phases 1 and 2 (1989-1990). We measured BMI and waist circumference at phases 3 (1991-1994) and 5 (1997-1999). Covariates at phase 1 included gender, age, marital status, ethnicity, BMI, employment grade, smoking, physical activity, fruit and vegetable consumption, and common mental disorder.
Results. After adjustment for sociodemographic characteristics and health behaviors, participants with higher exposure to negative aspects of close relationships had a higher likelihood of a 10% or greater increase in BMI and waist circumference (odds ratios per 1-unit increase 1.08 [95% confidence interval (CI)=1.02, 1.14; P=.007] and 1.09 [CI=1.04, 1.14; P <= .001], respectively) as well as a transition from the overweight (25 <= BMI <30) to the obese (BMI >= 30) category.
Conclusions. Adverse social relationships may contribute to weight gain.
Resumo:
Objective: The proportion of overweight and obese people has grown rapidly, and obesity has now been widely recognized as an important public health problem. At the came time, stress has increased in working life. The 2 problems could be connected if work stress promotes unhealthy eating habits and sedentary behavior and thereby contributes to weight gain. This study explored the association between work stress and body mass index (BMI; kg/m(2)). Methods: We used cross-sectional questionnaire data obtained from 45,810 female and male employees participating in the ongoing Finnish Public Sector Cohort Study. We constructed individual-level scores, as well as occupational- and organizational-level aggregated scores for work stress, as indicated by the demand/control model and the effort-reward imbalance model. Linear regression analyses were stratified by sex and socioeconomic status (SES) and adjusted for age, marital status, job contract, smoking, alcohol consumption, physical activity, and negative affectivity. Results: The results with the aggregated scores showed that lower job control, higher job strain, and higher effort-reward imbalance were associated with a higher BMI. In men, lower job demands were also associated with a higher BMI. These associations were not accounted for by SES, although an additional adjustment for SES attenuated the associations. The results obtained with the individual-level scores were in the same direction, but the relationships were weaker than those obtained with the aggregated scores. Conclusions: This study shows a weak association between work stress and BMI.
Resumo:
This review will summarize the significant body of research within the field of electrical methods of controlling the growth of microorganisms. We examine the progress from early work using current to kill bacteria in static fluids to more realistic treatment scenarios such as flow-through systems designed to imitate the human urinary tract. Additionally, the electrical enhancement of biocide and antibiotic efficacy will be examined alongside recent innovations including the biological applications of acoustic energy systems to prevent bacterial surface adherence. Particular attention will be paid to the electrical engineering aspects of previous work, such as electrode composition, quantitative electrical parameters and the conductive medium used. Scrutiny of published systems from an electrical engineering perspective will help to facilitate improved understanding of the methods, devices and mechanisms that have been effective in controlling bacteria, as well as providing insights and strategies to improve the performance of such systems and develop the next generation of antimicrobial bioelectric materials.
Resumo:
Recent experiments using Terawatt lasers to accelerate protons deposited on thin wire targets are modeled with a new type of gridless plasma simulation code. In contrast to conventional mesh-based methods, this technique offers a unique capability in emulating the complex geometry and open-ended boundary conditions characteristic of contemporary experimental conditions. Comparisons of ion acceleration are made between the tree code and standard particle-in-cell simulations for a typical collisionless
Resumo:
Geoscience methods are increasingly being utilised in criminal, environmental and humanitarian forensic investigations, and the use of such methods is supported by a growing body of experimental and theoretical research. Geoscience search techniques can complement traditional methodologies in the search for buried objects, including clandestine graves, weapons, explosives, drugs, illegal weapons, hazardous waste and vehicles. This paper details recent advances in search and detection methods, with case studies and reviews. Relevant examples are given, together with a generalised workflow for search and suggested detection technique(s) table. Forensic geoscience techniques are continuing to rapidly evolve to assist search investigators to detect hitherto difficult to locate forensic targets.
Resumo:
In this paper, a novel framework for visual tracking of human body parts is introduced. The approach presented demonstrates the feasibility of recovering human poses with data from a single uncalibrated camera by using a limb-tracking system based on a 2-D articulated model and a double-tracking strategy. Its key contribution is that the 2-D model is only constrained by biomechanical knowledge about human bipedal motion, instead of relying on constraints that are linked to a specific activity or camera view. These characteristics make our approach suitable for real visual surveillance applications. Experiments on a set of indoor and outdoor sequences demonstrate the effectiveness of our method on tracking human lower body parts. Moreover, a detail comparison with current tracking methods is presented.
Resumo:
Age-related macular degeneration (AMD), is the leading cause of blind registration in the Western World among individuals 65 years or older. Early AMD, a clinical state without overt functional loss, is said to be present clinically when yellowish deposits known as drusen and/or alterations of fundus pigmentation are seen in the macular retina. Although the etiopathogenesis of AMD remains uncertain, there is a growing body of evidence in support of the view that cumulative oxidative damage plays a causal role. Appropriate dietary antioxidant supplementation is likely to be beneficial in maintaining visual function in patients with AMD, and preventing or delaying the progression of early AMD to late AMD. The Carotenoids in Age-Related Maculopathy (CARMA) Study is a randomized and double-masked clinical trial of antioxidant supplementation versus placebo in 433 participants with either early AMD features of sufficient severity in at least one eye or any level of AMD in one eye with late AMD (neovascular AMD or central geographic atrophy) in the fellow eye. The aim of the CARMA Study is to investigate whether lutein and zeaxanthin, in combination with co-antioxidants (vitamin C, E, and zinc), has a beneficial effect on visual function and/or prevention of progression from early to late stages of disease. The primary outcome is improved or preserved distance visual acuity at 12 months. Secondary outcomes include improved or preserved interferometric acuity, contrast sensitivity, shape discrimination ability, and change in AMD severity as monitored by fundus photography. This article outlines the CARMA Study design and methodology, including its rationale.
Resumo:
Aims: To determine whether 80-lead body surface potential mapping (BSPM) improves detection of acute coronary artery occlusion in patients presenting with out-of-hospital cardiac arrest (OHCA) due to ventricular fibrillation (VF) and who survived to reach hospital. Methods and results: Of 645 consecutive patients with OHCA who were attended by the mobile coronary care unit, VF was the initial rhythm in 168 patients. Eighty patients survived initial resuscitation, 59 of these having had BSPM and 12-lead ECG post-return of spontaneous circulation (ROSC) and in 35 patients (age 69±13 yrs; 60% male) coronary angiography performed within 24. h post-ROSC. Of these, 26 (74%) patients had an acutely occluded coronary artery (TIMI flow grade [TFG] 0/1) at angiography. Twelve-lead ECG criteria showed ST-segment elevation (STE) myocardial infarction (STEMI) using Minnesota 9-2 criteria - sensitivity 19%, specificity 100%; ST-segment depression (STD) =0.05. mV in =2 contiguous leads - sensitivity 23%, specificity 89%; and, combination of STEMI or STD criteria - sensitivity 46%, specificity 100%. BSPM STE occurred in 23 (66%) patients. For the diagnosis of TFG 0/1 in a main coronary artery, BSPM STE had sensitivity 88% and specificity 100% (c-statistic 0.94), with STE occurring most commonly in either the posterior, right ventricular or high right anterior territories. Conclusion: Among OHCA patients presenting with VF and who survived resuscitation to reach hospital, post-resuscitation BSPM STE identifies acute coronary occlusion with sensitivity 88% and specificity 100% (c-statistic 0.94). © 2012 Elsevier Ireland Ltd.