18 resultados para Metal-mechanic production sector

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of ectomycorrhizal (ECM) fungi, from sites uncontaminated by toxic metals, were investigated to determine their sensitivity to Cd2-, Pb2+, Zn2+ and Sb3-, measured as an inhibition of fungal biomass production. Isolates were grown in liquid media amended with the metals, individually (over a range of concentrations) and in combination (at single concentrations) to determine any significant interactions between the metals. Significant interspecific variation in sensitivity to Cd2+ and Zn2+ was recorded, while Pb2+ and Sb3- individually had little effect. The presence of Pb2+ and Sb3- in the media did however, ameliorate Cd2+ and Zn2+ toxicity in some circumstances. Interactions between Cd2+ and Zn2+ were investigated further over a range of concentrations. Zn2+ was found to significantly ameliorate the toxicity of Cd2+ to three of the four isolates tested. The influence of Zn2+ varied between ECM species and with the concentrations of metals tested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The construction industry is one of the largest consumers of raw materials and energy and one of the highest contributor to green-houses gases emissions. In order to become more sustainable it needs to reduce the use of both raw materials and energy, thus lim-iting its environmental impact. Developing novel technologies to integrate secondary raw materials (i.e. lightweight recycled aggre-gates and alkali activated “cementless” binders - geopolymers) in the production cycle of concrete is an all-inclusive solution to im-prove both sustainability and cost-efficiency of construction industry. SUS-CON “SUStainable, Innovative and Energy-Efficiency CONcrete, based on the integration of all-waste materials” is an European project (duration 2012-2015), which aim was the inte-gration of secondary raw materials in the production cycle of concrete, thus resulting in innovative, sustainable and cost-effective building solutions. This paper presents the main outcomes related to the successful scaling-up of SUS-CON concrete solutions in traditional production plants. Two European industrial concrete producers have been involved, to design and produce both pre-cast components (blocks and panels) and ready-mixed concrete. Recycled polyurethane foams and mixed plastics were used as aggre-gates, PFA (Pulverized Fuel Ash, a by-product of coal fuelled power plants) and GGBS (Ground Granulated Blast furnace Slag, a by-product of iron and steel industries) as binders. Eventually, the installation of SUS-CON concrete solutions on real buildings has been demonstrated, with the construction of three mock-ups located in Europe (Spain, Turkey and Romania)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of hydrogen by steam reforming of bio-oils obtained from the fast pyrolysis of biomass requires the development of efficient catalysts able to cope with the complex chemical nature of the reactant. The present work focuses on the use of noble metal-based catalysts for the steam reforming of a few model compounds and that of an actual bio-oil. The steam reforming of the model compounds was investigated in the temperature range 650-950 degrees C over Pt, Pd and Rh supported on alumina and a ceria-zirconia sample. The model compounds used were acetic acid, phenol, acetone and ethanol. The nature of the support appeared to play a significant role in the activity of these catalysts. The use of ceria-zirconia, a redox mixed oxide, lead to higher H-2 yields as compared to the case of the alumina-supported catalysts. The supported Rh and Pt catalysts were the most active for the steam reforming of these compounds, while Pd-based catalysts poorly performed. The activity of the promising Pt and Rh catalysts was also investigated for the steam reforming of a bio-oil obtained from beech wood fast pyrolysis. Temperatures close to, or higher than, 800 degrees C were required to achieve significant conversions to COx and H-2 (e.g., H-2 yields around 70%). The ceria-zirconia materials showed a higher activity than the corresponding alumina samples. A Pt/ceria-zirconia sample used for over 9 h showed essentially constant activity, while extensive carbonaceous deposits were observed on the quartz reactor walls from early time on stream. In the present case, no benefit was observed by adding a small amount of O-2 to the steam/bio-oil feed (autothermal reforming, ATR), probably partly due to the already high concentration of oxygen in the bio-oil composition. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In responding to the demand for change and improvement, local government has applied a plethora of operations management-based methods, tools and techniques. This article explores how these methods, specifically in the form of performance management models, are used to improve alignment between central government policy and local government practice, an area which has thus far been neglected in the literature. Using multiple case studies from Environmental Waste Management Services, this research reports that models derived in the private sector are often directly ‘implanted’ into the public sector. This has challenged the efficacy of all performance management models. However, those organisations which used models most effectively did so by embedding (contextualisation) and extending (reconceptualisation) them beyond their original scope. Moreover, success with these models created a cumulative effect whereby other operations management approaches were probed, adapted and used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional water purification and disinfection generally involve potentially hazardous substances, some of which known to be carcinogenic in nature. Titanium dioxide photocatalytic processes provide an effective route to destroy hazardous organic contaminants. This present work explores the possibility of the removal of organic pollutants (phenol) by the application of TiO2 based photocatalysts. The production of series of metal ions doped or undoped TiO2 were carried out via a sol–gel method and a wet impregnation method. Undoped TiO2 and Cu doped TiO2 showed considerable phenol degradation. The efficiency of photocatalytic reaction largely depends on the photocatalysts and the methods of preparation the photocatalysts. The doping of Fe, Mn, and humic acid at 1.0 M% via sol–gel methods were detrimental for phenol degradation. The inhibitory effect of initial phenol concentration on initial phenol degradation rate reveals that photocatalytic decomposition of phenol follows pseudo zero order reaction kinetics. A concentration of > 1 g/L TiO2 and Cu doped TiO2 is required for the effective degradation of 50 mg/L of phenol at neutral pH. The rise in OH- at a higher pH values provides more hydroxyl radicals which are beneficial of phenol degradation. However, the competition among phenoxide ion, Cl- and OH- for the limited number of reactive sites on TiO2 will be a negative influence in the generation of hydroxyl radical. The dependence of phenol degradation rate on the light intensity was observed, which also implies that direct sunlight can be a substitute for the UV lamps and that photocatalytic treatment of organic pollutants using this technique shows some promise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MIL-101, a chromium-based metal-organic framework, is known for its very large pore size, large surface area and good stability. However, applications of this material in catalysis are still limited. 5-Hydroxymethylfurfural (HMF) has been considered a renewable chemical platform for the production of liquid fuels and fine chemicals. Phosphotungstic acid, H3PW12O40 (PTA), encapsulated in MIL-101 is evaluated as a potential catalyst for the selective dehydration of fructose and glucose to 5-hydroxymethylfurfural. The results demonstrate that PTA/MIL-101 is effective for HMF production from fructose in DMSO and can be reused. This is the first example of the application of a metal-organic framework in carbohydrate dehydration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mining/quarrying industry is a sector of industry where there are very few Life Cycle Assessment (LCA) tools, and where the role of LCA has been poorly investigated. A key issue is the integration of three inter-dependent life cycles: Project, Asset and Product. Given the unique features of mining LCAs, this Note from the Field presents a common methodology implemented within the Sustainable Aggregates Resource Management (SARMa) Project (www.sarmaproject.eu) in order to boost adoption of LCA in the aggregate industry in South Eastern Europe. The proposed methodology emphasises the importance of resource efficiency and recycling in the context of a Sustainable Supply Mix of aggregates for the construction industry. Through its adoption, aggregate producers, recyclers, and governmental planners would gain confidence with LCA tools and conduct consistent and meaningful life cycle analyses of natural and recycled aggregates. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The absolute yield of hydroxyl radicals per unit of deposited X-ray energy is determined for the first time for irradiated aqueous solutions containing metal nanoparticles based on a “reference” protocol. Measurements are made as a function of dose rate and nanoparticle concentration. Possible mechanisms for hydroxyl radical production are considered in turn: energy deposition in the nanoparticles followed by its transport into the surrounding environment is unable to account for observed yield whereas energy deposition in the water followed by a catalytic-like reaction at the water-nanoparticle interface can account for the total yield and its dependence on dose rate and nanoparticle concentration. This finding is important because current models used to account for nanoparticle enhancement to radiobiological damage only consider the primary interaction with the nanoparticle, not with the surrounding media. Nothing about the new mechanism appears to be specific to gold, the main requirements being the formation of a structured water layer in the vicinity of the nanoparticle possibly through the interaction of its charge and the water dipoles. The massive hydroxyl radical production is relevant to a number of application fields, particularly nanomedicine since the hydroxyl radical is responsible for the majority of radiation-induced DNA damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper provides a full overview of base metal finds from the excavations conducted at Haughey's Fort between 1987 and 1995. Most of the assemblage consists of waste metal from casting activities relating to the Late Bronze Age occupation of the site. A small minority of objects are of a later date, mostly Iron Age. Both the latter and the vast majority of Late Bronze metal items were recovered from a specific sector of the inner enclosure. Typological parallels, context and chronology of the finds are discussed, and a tentative interpretation of the evidence proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel manufacturing process for fabricating microneedle arrays (MN) has been designed and evaluated. The prototype is able to successfully produce 14 × 14 MN arrays and is easily capable of scale-up, enabling the transition from laboratory to industry and subsequent commercialisation. The method requires the custom design of metal MN master templates to produce silicone MN moulds using an injection moulding process. The MN arrays produced using this novel method was compared with centrifugation, the traditional method of producing aqueous hydrogel-forming MN arrays. The results proved that there was negligible difference between either methods, with each producing MN arrays with comparable quality. Both types of MN arrays can be successfully inserted in a skin simulant. In both cases the insertion depth was approximately 60% of the needle length and the height reduction after insertion was in both cases approximately 3%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytochelatins (PCs) are required for arsenic (As) detoxification in nontolerant plants. In addition, a role for PCs in arsenate tolerance has recently been proven, with tolerant plants able to accumulate significantly higher concentrations of As-PC complexes at equivalent levels of stress than nontolerant plants. The relationship between arsenate influx and PC production in tolerant and non-tolerant Holcus lanatus plants was determined in this study, along with an investigation of the effect of inhibition of PC synthesis by buthionine sulfoximine (BSO) on arsenate tolerance. A strong correlation between PC production and arsenate influx was demonstrated in arsenate-tolerant plants. In addition, inhibition of PC synthesis by BSO in tolerant plants increased arsenate sensitivity to that of the nontolerant clone. This dramatic reduction in tolerance proves that PC production is an essential component of the arsenate tolerance mechanism in H. lanatus. This study proposes that while there is a single major gene for arsenate tolerance, hypostatic modifiers are also in operation, affecting the expression of the tolerance character. © New Phytologist (2002).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanotechnology has relevance to applications in all areas of agri-food including agriculture, aquaculture, production, processing, packaging, safety and nutrition. Scientific literature indicates uncertainties in food safety aspects about using nanomaterials due to potential health risks. To date the agri-food industry's awareness and attitude towards nanotechnology have not been addressed. We surveyed the awareness and attitudes of agri-food organisations on the island of Ireland (IoI) with regards to nanotechnology. A total of 14 agri-food stakeholders were interviewed and 88 agri-food stakeholders responded to an on-line questionnaire. The findings indicate that the current awareness of nanotechnology applications in the agri-food sector on the IoI is low and respondents are neither positive nor negative towards agri-food applications of nanotechnology. Safer food, reduced waste and increased product shelf life were considered to be the most important benefits to the agri-food industry. Knowledge of practical examples of agri-food applications is limited however opportunities were identified in precision farming techniques, innovative packaging, functional ingredients and nutrition of foods, processing equipment, and safety testing. Perceived impediments to nanotechnology adoption were potential unknown human health and environmental impacts, consumer acceptance and media framing. The need for a risk assessment framework, research into long term health and environmental effects, and better engagement between scientists, government bodies, the agri-food industry and the public were identified as important.