97 resultados para Metal Oxides as Heterogeneous Catalysts

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CO oxidation on TiO2 supported Au has been studied using density functional theory calculations. Important catalytic roles of the oxide have been identified: (i) CO oxidation occurs at the interface between Au and the oxide with a very small barrier; and (ii) O-2 adsorption at the interface is the key step in the reaction. The physical origin of the oxide promotion effect has been further investigated: The oxide enhances electron transfer from the Au to the antibonding states of O-2, giving rise to (i) strong ionic bonding between the adsorbed O-2, Au, and the Ti cation; and (ii) a significant activation of O-2 towards CO oxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanochemical synthesis has the potential to provide more sustainable preparative routes to catalysts than the current multistep solvent-based routes. In this review, the mechanochemical synthesis of catalysts is discussed, with emphasis placed on catalysts for environmental, energy and chemical synthesis applications. This includes the formation of mixed-metal oxides as well as the process of dispersing metals onto solid supports. In most cases the process involves no solvent. Encouragingly, there are several examples where the process is advantageous compared with the more normal solvent-based methods. This can be because of process cost or simplicity, or, notably, where it provides more active/selective catalysts than those made by conventional wet chemical methods. The need for greater, and more systematic, exploration of this currently unconventional approach to catalyst synthesis is highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The C-H activation on metal oxides is a fundamental process in chemistry. In this paper, we report a density functional theory study on the process of the C-H activation of CH4 on Pd(111), Pt(111), Ru(0001), Tc(0001), Cu(111), PdO(001), PdO(110), and PdO(100). A linear relationship between the C-H activation barrier and the chemisorption in the dissociation final state on the metal surfaces is obtained, which is consistent with the work in the literature. However, the relationship is poor on the metal oxide surfaces. Instead, a strong linear correlation between the barrier and the lattice O-H bond strength is found on the oxides. The new linear relationship is analyzed and the physical origin is identified. (c) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium, and quaternary ammonium bis(trifluoromethyl-sulfonyl)imide salts were functionalized with a carboxyl group. These ionic liquids are useful for the selective dissolution of metal oxides and hydroxides. Although these hydrophobic ionic liquids are immiscible with water at room temperature, several of them form a single phase with water at elevated temperatures. Phase separation occurs upon cooling. This thermomorphic behavior has been investigated by H-1 NMR, and it was found that it can be attributed to the temperature-dependent hydration and hydrogen-bond formation of the ionic liquid components. The crystal structures of four ionic liquids and five metal complexes have been determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protonated betaine bis(trifluoromethylsulfonyl) imide is an ionic liquid with the ability to dissolve large quantities of metal oxides. This metal-solubilizing power is selective. Soluble are oxides of the trivalent rare earths, uranium(VI) oxide, zinc(II) oxide, cadmium( II) oxide, mercury( II) oxide, nickel( II) oxide, copper(II) oxide, palladium(II) oxide, lead(II) oxide, manganese( II) oxide, and silver( I) oxide. Insoluble or very poorly soluble are iron(III), manganese(IV), and cobalt oxides, as well as aluminum oxide and silicon dioxide. The metals can be stripped from the ionic liquid by treatment of the ionic liquid with an acidic aqueous solution. After transfer of the metal ions to the aqueous phase, the ionic liquid can be recycled for reuse. Betainium bis( trifluoromethylsulfonyl) imide forms one phase with water at high temperatures, whereas phase separation occurs below 55.5 degrees C ( temperature switch behavior). The mixtures of the ionic liquid with water also show a pH-dependent phase behavior: two phases occur at low pH, whereas one phase is present under neutral or alkaline conditions. The structures, the energetics, and the charge distribution of the betaine cation and the bis( trifluoromethylsulfonyl) imide anion, as well as the cation-anion pairs, were studied by density functional theory calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MIL-101, a chromium-based metal-organic framework, is known for its very large pore size, large surface area and good stability. However, applications of this material in catalysis are still limited. 5-Hydroxymethylfurfural (HMF) has been considered a renewable chemical platform for the production of liquid fuels and fine chemicals. Phosphotungstic acid, H3PW12O40 (PTA), encapsulated in MIL-101 is evaluated as a potential catalyst for the selective dehydration of fructose and glucose to 5-hydroxymethylfurfural. The results demonstrate that PTA/MIL-101 is effective for HMF production from fructose in DMSO and can be reused. This is the first example of the application of a metal-organic framework in carbohydrate dehydration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoscale electromechanical activity, remanent polarization states, and hysteresis loops in paraelectric TiO2 and SrTiO3 thin films are observed using scanning probe microscopy. The coupling between the ionic dynamics and incipient ferroelectricity in these materials is analyzed using extended Landau-Ginzburg-Devonshire (LGD) theory. The possible origins of electromechanical coupling including ionic dynamics, surface-charge induced electrostriction, and ionically induced ferroelectricity are identified. For the latter, the ionic contribution can change the sign of first order LGD expansion coefficient, rendering material effectively ferroelectric. The lifetime of these ionically induced ferroelectric states is then controlled by the transport time of the mobile ionic species and well above that of polarization switching. These studies provide possible explanation for ferroelectric-like behavior in centrosymmetric transition metal oxides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using benzene hydrogenation over Pt/SiO2 as an industrially-relevant example, we show that state-of-the-art neutron total scattering methods spanning a wide Q-range now permit relevant time-resolved catalytic chemistry to be probed directly in situ within the pore of the catalyst. The method gives access to the reaction rates on both nanometric and atomic length scales, whilst simultaneously providing an atomistic structural viewpoint on the reaction mechanism itself.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterogeneous catalysis is of great importance both industrially and academically. Rational design of heterogeneous catalysts is highly desirable, and the computational screening and design method is one of the most promising approaches for rational design of heterogeneous catalysts. Herein, we review some attempts towards the rational catalyst design using density functional theory from our group. Some general relationships and theories on the activity and selectivity are covered, such as the Brønsted–Evans–Polanyi relation, volcano curves/surfaces, chemical potentials, optimal adsorption energy window and energy descriptor of selectivity. Furthermore, the relations of these relationships and theories to the rational design are discussed, and some examples of computational screening and design method are given.