44 resultados para MICROMECHANICAL RESONATORS

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel 3rd-order compact E-plane ridge waveguide filter is presented. Miniaturization is achieved upon introducing a configuration of parallel-coupled E-plane ridge waveguide resonators. Furthermore, the proposed filter allows for transmission zeros at finite frequencies. Fabrication simplicity and mass producibility of standard E-plane filters is maintained. The numerical and experimental results are presented to validate the proposed configuration. A miniaturisation factor of 2 and very sharp upper cutoff are achieved. 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel periodically loaded E-plane waveguide resonators are presented in this paper. The proposed resonators make use of the slow-wave effect in order to achieve significantly increased loaded Q values for resonators of constant volume, as compared to their homogeneous counterparts, without introducing any complexity in the fabrication process. Numerical and experimental results are presented to validate the argument. (C) 2003 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper novel 3D periodic multilayer structures are investigated in MIC technology, and a periodically loaded multilayer waveguide resonant structure is proposed. This is a very compact structure and still maintains simple fabrication process. The resonator is designed at 10 and 28 GHz. The simulated results of this resonator, which is obtained from commercial FEM software package HFSS, are confirmed by experimental results. The experiments are based oil the same resonator structure, only at 10 GHz. By modifying the conventional waveguide resonator, with the proposed structure, a minimum 30% shorter resonator can be achieved, which is very important at filter applications. (C) 2002 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality factor of microwave resonators miniaturised by virtue of periodic loading is assessed. Five X-band resonators in E-plane technology with different miniaturisation factors have been designed to resonate at approximately the same frequency. The loaded quality factor is extracted from the fractional bandwidth and subsequently employed to estimate the unloaded quality factor. The study reveals that the unloaded quality factor drops approximately linearly with the miniaturisation. Subsequently design guidelines for E-plane filters with periodically loaded resonators are provided by means of an example involving a fifth-order filter. Full-wave simulated and experimental results are presented to validate the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, may self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter into the cavity mode and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott insulator, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity-field intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the phase is compressible. These states could be realized in existing experimental setups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatigue damage calculations of unidirectional polymer composites is presented applying micromechanics theory. An orthotropic micromechanical damage model is integrated with an isotropic fatigue evolution model to predict the micromechanical fatigue damage of the composite structure. The orthotropic micromechanical damage model is used to predict the orthotropic damage evolution within a single cycle. The isotropic fatigue model is used to predict the magnitude of fatigue damage accumulated as a function of the number of cycles. The advantage of using this approach is the cheap determination of model parameters since the orthotropic damage model parameters can be determined using available data from quasi-static loading tests. Decomposition of the state variables down to the constituent scale is accomplished by micromechanics theory. Phenomenological damage evolution models are then postulated for each constituent and for interphase among them. Comparison between model predictions and experimental data is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a substrate integrated waveguide
(SIW) cavity-based method that is compliant with
ground-signal–ground (GSG) probing technology for dielectric
characterization of printed circuit board materials at millimeter
wavelengths. This paper presents the theory necessary to retrieve
dielectric parameters from the resonant characteristics of SIW
cavities with particular attention placed on the coupling scheme
and means for obtaining the unloaded resonant frequency. Different
sets of samples are designed and measured to address the
influence of the manufacturing process on the method. Material
parameters are extracted at - and -band from measured data
with the effect of surface roughness of the circuit metallization
taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an analytical model for the prediction of the elastic behaviour of plain-weave fabric composites. The fabric is a hybrid plain-weave with different materials and undulations in the warp and weft directions. The derivation of the effective material properties is based on classical laminate theory (CLT).

The theoretical predictions have been compared with experimental results and predictions using alternative models available in the literature. Composite laminates were manufactured using the resin infusion under flexible tooling (RIFT) process and tested under tension and in-plane shear loading to validate the model. A good correlation between theoretical and experimental results for the prediction of in-plane properties was obtained. The limitations of the existing theoretical models based on classical laminate theory (CLT) for predicting the out-of-plane mechanical properties are presented and discussed.