9 resultados para Liquid bulk cargo.

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

LC3, a mammalian homologue of yeast Atg8, is assumed to play an important part in bulk sequestration and degradation of cytoplasm (macroautophagy), and is widely used as an indicator of this process. To critically examine its role, we followed the autophagic flux of LC3 in rat hepatocytes during conditions of maximal macroautophagic activity (amino acid depletion), combined with analyses of macroautophagic cargo sequestration, measured as transfer of the cytosolic protein lactate dehydrogenase (LDH) to sedimentable organelles. To accurately determine LC3 turnover we developed a quantitative immunoblotting procedure that corrects for differential immunoreactivity of cytosolic and membrane-associated LC3 forms, and we included cycloheximide to block influx of newly synthesized LC3. As expected, LC3 was initially degraded by the autophagic-lysosomal pathway, but, surprisingly, autophagic LC3-flux ceased after ~2h. In contrast, macroautophagic cargo flux was well maintained, and density gradient analysis showed that sequestered LDH partly accumulated in LC3-free autophagic vacuoles. Hepatocytic macroautophagy could thus proceed independently of LC3. Silencing of either of the two mammalian Atg8 subfamilies in LNCaP prostate cancer cells exposed to macroautophagy-inducing conditions (starvation or the mTOR-inhibitor Torin1) confirmed that macroautophagic sequestration did not require the LC3 subfamily, but, intriguingly, we found the GABARAP subfamily to be essential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The selective heterogeneous catalytic reduction of phenyl acetylene to styrene over palladium supported on calcium carbonate is reported in both an ionic liquid and a molecular solvent. By using a rotating disc reactor in conjunction with results from a stirred tank reactor it is possible, for the first time, to disentangle the mass transfer contributions in the ionic liquid system. For both heptane and 1-butyl-3-methyl imidazolium bis{(trifluoromethyl)sulfonyl}imide, the reaction in the rotating disc reactor is dominated by reaction in the entrained film on the disc compared with very limited reaction in the bulk liquid. The lower reaction rate obtained in the ionic liquid compared with the organic solvent is shown to be due to the slow transport of the hydrogen dissolved in the liquid. It is clear from the results presented herein that, although the hydrodynamics of similar reactors used for biological treatment of wastewater are well understood, on using a more viscous fluid and higher rotation speeds necessary for fine chemical catalysis these simple relationships breakdown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of a room temperature molten salt to an external electric field when it is confined to a nanoslit is studied by molecular dynamics simulations. The fluid is confined between two parallel and oppositely charged walls, emulating two electrified solid-liquid interfaces. Attention is focused on structural, electrostatic, and dynamical properties, which are compared with those of the nonpolarized fluid. It is found that the relaxation of the electrostatic potential, after switching the electric field off, occurs in two stages. A first, subpicosecond process accounts for 80% of the decay and is followed by a second subdiffusive process with a time constant of 8 ps. Diffusion is not involved in the relaxation, which is mostly driven by small anion translations. The relaxation of the polarization in the confined system is discussed in terms of the spectrum of charge density fluctuations in the bulk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water solutions of representative (IC(4)mim][Cl] and [C(4)mim][Tf2N] room temperature ionic liquids (ILs) in contact with a neutral lipid bilayer made of cholesterol molecules has been investigated by molecular dynamics simulations based on an empirical force field model. The results show that both ILs display selective adsorption at the water-cholesterol interface, with partial inclusion of ions into the bilayer. In the case Of [C(4)mim][Cl], the adsorption of ions at the water-cholesterol interface is limited by a sizable bulk solubility of the IL, driven by the high water affinity of [Cl](-). The relatively low Solubility Of [C(4)mim][Tf2N], instead, gives rise to a nearly complete segregation of the IL component on the bilayer, altering its volume, compressibility, and electrostatic environment. The computational results display important similarities to the results of recent experimental measurements for ILs in contact with phospholipid model membranes (see Evans, K. O. Int. J. Mol. Sci. 2008, 9, 498-511 and references therein).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated methyl methacrylate – polymethyl methacrylate powder bed interactions through droplet analyses, using model fluids and commercially available bone cement. The effects of storage temperature of liquid monomer and powder packing configuration on drop penetration time were investigated. Methyl methacrylate showed much more rapid imbibition than caprolactone due to decrease in both contact angle and fluid viscosity. Drop penetration of caprolactone through polymethyl methacrylate increased with decrease in bed macro-voids and increase in bulk density as predicted by the modified constant drawing area penetration model and confirmed by drop penetration images. Linear relationships were found between droplet mass and drawing area with imbibition time. Further experiments showed gravimetric analysis of the polymerised methyl methacrylate – polymethyl methacrylate matrix under various storage temperatures correlated with Reynolds number and Washburn analyses. These observations have direct implications for the design of mixing and delivery systems for acrylic bone cements used in orthopaedic surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supported ionic liquid membranes (SILMs) has the potential to be a new technological platform for gas/organic vapour separation because of the unique non-volatile nature and discriminating gas dissolution properties of room temperature ionic liquids (ILs). This work starts with an examination of gas dissolution and transport properties in bulk imidazulium cation based ionic liquids [Cnmim][NTf2] (n = 2.4, 6, 8.10) from simple gas H2, N2, to polar CO2, and C2H6, leading to a further analysis of how gas dissolution and diffusion are influenced by molecular specific gas-SILMs interactions, reflected by differences in gas dissolution enthalpy and entropy. These effects were elucidated again during gas permeation studies by examining how changes in these properties and molecular specific interactions work together to cause deviations from conventional solution–diffusion theory and their impact on some remarkably contrasting gas perm-selectivity performance. The experimental perm-selectivity for all tested gases showed varied and contrasting deviation from the solution–diffusion, depending on specific gas-IL combinations. It transpires permeation for simpler non-polar gases (H2, N2) is diffusion controlled, but strong molecular specific gas-ILs interactions led to a different permeation and selectivity performance for C2H6 and CO2. With exothermic dissolution enthalpy and large order disruptive entropy, C2H6 displayed the fastest permeation rate at increased gas phase pressure in spite of its smallest diffusivity among the tested gases. The C2H6 gas molecules “peg” on the side alkyl chain on the imidazulium cation at low concentration, and are well dispersed in the ionic liquids phase at high concentration. On the other hand strong CO2-ILs affinity resulted in a more prolonged “residence time” for the gas molecule, typified by reversed CO2/N2 selectivity and slowest CO2 transport despite CO2 possess the highest solubility and comparable diffusivity in the ionic liquids. The unique transport and dissolution behaviour of CO2 are further exploited by examining the residing state of CO2 molecules in the ionic liquid phase, which leads to a hypothesis of a condensing and holding capacity of ILs towards CO2, which provide an explanation to slower CO2 transport through the SILMs. The pressure related exponential increase in permeations rate is also analysed which suggests a typical concentration dependent diffusion rate at high gas concentration under increased gas feed pressure. Finally the strong influence of discriminating and molecular specific gas-ILs interactions on gas perm-selectivity performance points to future specific design of ionic liquids for targeted gas separations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas absorption accompanied by an irreversible chemical reaction of first-order or second-order in a liquid layer of finite thickness in plug flow has been investigated. The analytical solution to the enhancement factor has been derived for the case of a first-order reaction, and the exact solution to the enhancement factor has been obtained via numerical simulation for the case of a second-order reaction. The enhancement factor in both cases is presented as a function of the Fourier number and tends to deviate from the prediction of the existing enhancement factor expressions based on the penetration theory at Fourier numbers above 0.1 due to the absence of a well-mixed bulk region in the liquid layer. Approximate enhancement factor expressions that describe the analytical and exact solutions with an accuracy of 5?% and 9?%, respectively, have been proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macroautophagy, the process responsible for bulk sequestration and lysosomal degradation of cytoplasm, is often monitored by means of the autophagy-related marker protein LC3. This protein is linked to the phagophoric membrane by lipidation during the final steps of phagophore assembly, and it remains associated with autophagic organelles until it is degraded in the lysosomes. The transfer of LC3 from cytosol to membranes and organelles can be measured by immunoblotting or immunofluorescence microscopy, but these assays provide no information about functional macroautophagic activity, i.e., whether the phagophores are actually engaged in the sequestration of cytoplasmic cargo and enclosing this cargo into sealed autophagosomes. Moreover, accumulating evidence suggest that macroautophagy can proceed independently of LC3. There is therefore a need for alternative methods, preferably effective cargo sequestration assays, which can monitor actual macroautophagic activity. Here, we provide an overview of various approaches that have been used over the last four decades to measure macroautophagic sequestration activity in mammalian cells. Particular emphasis is given to the so-called "LDH sequestration assay", which measures the transfer of the autophagic cargo marker enzyme LDH (lactate dehydrogenase) from the cytosol to autophagic vacuoles. The LDH sequestration assay was originally developed to measure macroautophagic activity in primary rat hepatocytes. Subsequently, it has found use in several other cell types, and in this article we demonstrate a further validation and simplification of the method, and show that it is applicable to several cell lines that are commonly used to study autophagy.