59 resultados para JOINTS
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Within the sustainability context, this paper is extremely timely and relevant. The research focuses on broadening the use of timber structurally. The insight gained forms the basis for sustainable, fire resistant, economic and aesthetically pleasing moment resistant connections in timber.
Resumo:
Details are given of a cold-formed steel portal framing system that uses simple bolted moment-connections for both the eaves and apex joints. However, such joints function as semi-rigid and, as a result, the design of the proposed system will be dominated by serviceability requirements. While serviceability is a mandatory design requirement, actual deflection limits for portal frames are not prescribed in many of the national standards. In this paper, a review of the design constraints that have an effect on deflection limits is discussed, and rational values appropriate for use with cold-formed steel portal frames are recommended. Adopting these deflection limits, it is shown through a design example how a cold-formed steel portal frame having semi-rigid eaves and apex joints can be a feasible alternative to rigid-jointed frames in appropriate circumstances.
Resumo:
This manuscript describes how motor behaviour researchers who are not at the same time expert roboticists may implement an experimental apparatus, which has the ability to dictate torque fields around a single joint on one limb or single joints on multiple limbs without otherwise interfering with the inherent dynamics of those joints. Such an apparatus expands the exploratory potential of the researcher wherever experimental distinction of factors may necessitate independent control of torque fields around multiple limbs, or the shaping of torque fields of a given joint independently of its plane of motion, or its directional phase within that plane. The apparatus utilizes torque motors. The challenge with torque motors is that they impose added inertia on limbs and thus attenuate joint dynamics. We eliminated this attenuation by establishing an accurate mathematical model of the robotic device using the Box-Jenkins method, and cancelling out its dynamics by employing the inverse of the model as a compensating controller. A direct measure of the remnant inertial torque as experienced by the hand during a 50 s period of wrist oscillations that increased gradually in frequency from 1.0 to 3.8 Hz confirmed that the removal of the inertial effect of the motor was effectively complete.
Resumo:
In this preliminary study the initial failure of a bolted composite joint was investigated. The results of an experimental program using two simple beams bolted together with offset loading are presented. These test specimens were used to simulate a typical skin-spar attachment in a composite wing undergoing hydraulic shock. Initial failure was found to be due to a prying force induced at the outer sections of the joint leading to transverse shear failure.
Resumo:
A softened strut-and-tie macro model able to reproduce the flexural behaviour of
external beam-column joint is presented. The model is specific for concrete with hooked steel fibres (FRC) and it is designed to calculate the flexural response, as load-deflection curve, of a beam-column sub-assemblages. The model considers the presence of a constant vertical load acting on the column and of a monotonically increasing lateral force applied at the tip of the beam.
Resumo:
A 3-DOF (degrees-of-freedom) multi-mode translational/spherical PM (parallel mechanism) with lockable joints is a novel reconfigurable PM. It has both 3-DOF spatial translational operation mode and 3-DOF spherical operation mode. This paper presents an approach to the type synthesis of translational/spherical PMs with lockable joints. Using the proposed approach, several 3-DOF translational/spherical PMs are obtained. It is found that these translational/spherical PMs do not encounter constraint singular configurations and self-motion of sub-chain of a leg during reconfiguration. The approach can also be used for synthesizing other classes of multi-mode PMs with lockable joints, multi-mode PMs with variable kinematic joints, partially decoupled PMs, and reconfigurable PMs with a reconfigurable platform.
Resumo:
Shape memory alloys (SMAs) have the ability to undergo large deformations with minimum residual strain and also the extraordinary ability to undergo reversible hysteretic shape change known as the shape memory effect. The shape memory effect of these alloys can be utilised to develop a convenient way of actively confine concrete sections to improve their shear strength, flexural ductility and ultimate strain. Most of the previous work on active confinement of concrete using SMA has been carried out on circular sections. In this study retrofitting strategies for active confinement of non-circular sections have been proposed. The proposed schemes presented in this paper are conceived with an aim to seismically retrofit beam-column joints in non-seismically designed reinforced concrete buildings. SMAs are complex materials and their material behaviour depends on number of parameters. Depending upon the alloying elements, SMAs exhibit different behaviour in different conditions and are highly sensitive to variation in temperature, phase in which it is used, loading pattern, strain rate and pre-strain conditions. Therefore, a detailed discussion on the behaviour of SMAs under different thermo-mechanical conditions is presented first.
Resumo:
The mode I and mode II fracture properties of the FM300-2 adhesive bond between 5HS/RTM6 laminates are determined experimentally by DCB and ELS test. The crack propagation is studied numerically by means of interface elements based on the decohesive zone model. The latter is characterized by material degradation, which is usually assumed to be linear. In the present study it is shown that if a non-linear material degradation is used with an increased magnitude of the interface relative displacement at failure it is possible to model more correctly the experimentally observed significant non-linear behaviour before the start of crack propagation. An adhesive stepped flush joint is studied experimentally and numerically. A mixed mode interaction criterion is used together with the nonlinear material degradation of the interface. Sensitivity studies are performed to study the influence of the parameters defining it.