66 resultados para Information theory.
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The analytic advantages of central concepts from linguistics and information theory, and the analogies demonstrated between them, for understanding patterns of retrieval from full-text indexes to documents are developed. The interaction between the syntagm and the paradigm in computational operations on written language in indexing, searching, and retrieval is used to account for transformations of the signified or meaning between documents and their representation and between queries and documents retrieved. Characteristics of the message, and messages for selection for written language, are brought to explain the relative frequency of occurrence of words and multiple word sequences in documents. The examples given in the companion article are revisited and a fuller example introduced. The signified of the sequence stood for, the term classically used in the definitions of the sign, as something standing for something else, can itself change rapidly according to its syntagm. A greater than ordinary discourse understanding of patterns in retrieval is obtained.
Resumo:
An analogy is established between the syntagm and paradigm from Saussurean linguistics and the message and messages for selection from the information theory initiated by Claude Shannon. The analogy is pursued both as an end itself and for its analytic value in understanding patterns of retrieval from full text systems. The multivalency of individual words when isolated from their syntagm is contrasted with the relative stability of meaning of multi-word sequences, when searching ordinary written discourse. The syntagm is understood as the linear sequence of oral and written language. Saussureâ??s understanding of the word, as a unit which compels recognition by the mind, is endorsed, although not regarded as final. The lesser multivalency of multi-word sequences is understood as the greater determination of signification by the extended syntagm. The paradigm is primarily understood as the network of associations a word acquires when considered apart from the syntagm. The restriction of information theory to expression or signals, and its focus on the combinatorial aspects of the message, is sustained. The message in the model of communication in information theory can include sequences of written language. Shannonâ??s understanding of the written word, as a cohesive group of letters, with strong internal statistical influences, is added to the Saussurean conception. Sequences of more than one word are regarded as weakly correlated concatenations of cohesive units.
Resumo:
This paper provides algorithms that use an information-theoretic analysis to learn Bayesian network structures from data. Based on our three-phase learning framework, we develop efficient algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of conditional independence (CI) tests in typical cases. We provide precise conditions that specify when these algorithms are guaranteed to be correct as well as empirical evidence (from real world applications and simulation tests) that demonstrates that these systems work efficiently and reliably in practice.
Resumo:
Information retrieval in the age of Internet search engines has become part of ordinary discourse and everyday practice: "Google" is a verb in common usage. Thus far, more attention has been given to practical understanding of information retrieval than to a full theoretical account. In Human Information Retrieval, Julian Warner offers a comprehensive overview of information retrieval, synthesizing theories from different disciplines (information and computer science, librarianship and indexing, and information society discourse) and incorporating such disparate systems as WorldCat and Google into a single, robust theoretical framework. There is a need for such a theoretical treatment, he argues, one that reveals the structure and underlying patterns of this complex field while remaining congruent with everyday practice. Warner presents a labor theoretic approach to information retrieval, building on his previously formulated distinction between semantic and syntactic mental labor, arguing that the description and search labor of information retrieval can be understood as both semantic and syntactic in character. Warner's information science approach is rooted in the humanities and the social sciences but informed by an understanding of information technology and information theory. The chapters offer a progressive exposition of the topic, with illustrative examples to explain the concepts presented. Neither narrowly practical nor largely speculative, Human Information Retrieval meets the contemporary need for a broader treatment of information and information systems.
Resumo:
We introduce a novel graph class we call universal hierarchical graphs (UHG) whose topology can be found numerously in problems representing, e.g., temporal, spacial or general process structures of systems. For this graph class we show, that we can naturally assign two probability distributions, for nodes and for edges, which lead us directly to the definition of the entropy and joint entropy and, hence, mutual information establishing an information theory for this graph class. Furthermore, we provide some results under which conditions these constraint probability distributions maximize the corresponding entropy. Also, we demonstrate that these entropic measures can be computed efficiently which is a prerequisite for every large scale practical application and show some numerical examples. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Cascade control is one of the routinely used control strategies in industrial processes because it can dramatically improve the performance of single-loop control, reducing both the maximum deviation and the integral error of the disturbance response. Currently, many control performance assessment methods of cascade control loops are developed based on the assumption that all the disturbances are subject to Gaussian distribution. However, in the practical condition, several disturbance sources occur in the manipulated variable or the upstream exhibits nonlinear behaviors. In this paper, a general and effective index of the performance assessment of the cascade control system subjected to the unknown disturbance distribution is proposed. Like the minimum variance control (MVC) design, the output variances of the primary and the secondary loops are decomposed into a cascade-invariant and a cascade-dependent term, but the estimated ARMA model for the cascade control loop based on the minimum entropy, instead of the minimum mean squares error, is developed for non-Gaussian disturbances. Unlike the MVC index, an innovative control performance index is given based on the information theory and the minimum entropy criterion. The index is informative and in agreement with the expected control knowledge. To elucidate wide applicability and effectiveness of the minimum entropy cascade control index, a simulation problem and a cascade control case of an oil refinery are applied. The comparison with MVC based cascade control is also included.
Resumo:
This research published in the foremost international journal in information theory and shows interplay between complex random matrix and multiantenna information theory. Dr T. Ratnarajah is leader in this area of research and his work has been contributed in the development of graduate curricula (course reader) in Massachusetts Institute of Technology (MIT), USA, By Professor Alan Edelman. The course name is "The Mathematics and Applications of Random Matrices", see http://web.mit.edu/18.338/www/projects.html