71 resultados para INTERFACIAL ENERGIES
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Most of the experimental and theoretical studies of electron-impact ionization of atoms, referred to as (e, 2e), have concentrated on the scattering plane. The assumption has been that all the important physical effects will be observable in the scattering plane. However, very recently it has been shown that, for C6+-helium ionization, experiment and theory are in nice agreement in the scattering plane and in very bad agreement out of the scattering plane. This lack of agreement between experiment and theory has been explained in terms of higher-order scattering effects between the projectile and target ion. We have examined electron-impact ionization of magnesium and have observed similar higher-order effects. The results of the electron-impact ionization of magnesium indicate the possible deficiencies in the calculation of fully differential cross sections in previous heavy particle ionization work.
Resumo:
An effective frozen core approximation has been developed and applied to the calculation of energy levels and ionization energies of the beryllium atom in magnetic field strengths up to 2.35 x 10(5) T. Systematic improvement over the existing results for the beryllium ground and low-lying states has been accomplished by taking into account most of the correlation effects in the four-electron system. To our knowledge, this is the first calculation of the electronic properties of the beryllium atom in a strong magnetic field carried out using a configuration interaction approximation and thus allowing a treatment beyond that of Hartree-Fock. Differing roles played by strong magnetic fields in intrashell correlation within different states are observed. In addition, possible ways to gain further improvement in the energies of the states of interest are proposed and discussed briefly.
Resumo:
Measurements of electron velocity distributions emitted at 0degrees for collisions of 10- and 20-keV H+ incident ions on H-2 and He show that the electron capture to the continuum cusp formation, which is still possible at these low impact energies, is shifted to lower momenta than its standard position (centered on the projectile velocity), as recently predicted. Classical trajectory Monte Carlo calculations reproduce the observations remarkably well, and indicate that a long-range residual interaction of the electron with the target ion after ionization is responsible for the shifts, which is a general effect that is enhanced at low nuclear velocities.
Resumo:
A model is presented for obtaining the step formation energy for metallic islands on (1 1 1) surfaces from Monte Carlo simulations. This model is applied to homo (Cu/Cu(1 1 1), Ag/Ag(1 1 1)) and heteroepitaxy (Ag/Pt(1 1 1)) systems. The embedded atom method is used to represent the interaction between the particles of the system, but any other type of potential could be used as well. The formulation can also be employed to consider the case of other single crystal surfaces, since the higher barriers for atom motion on other surfaces are not a hindrance for the simulation scheme proposed.
Resumo:
Thin film Ba0.5Sr0.5TiO3 (BST) capacitors of thickness similar to75 nm to similar to1200 nm, with Au top electrodes and SrRuO 3 (SRO) or (La, Sr)CoO3 (LSCO) bottom electrodes were fabricated using Pulsed Laser Deposition. Implementing the "series capacitor model," bulk and interfacial capacitance properties were extracted as a function of temperature and frequency. 'Bulk' properties demonstrated typical ceramic behaviour, displaying little frequency dependence and a permittivity and loss peak at 250 K and 150 K respectively. The interfacial component was found to be relatively temperature and frequency independent for the LSCO/BST capacitors, but for the SRO/BST configuration the interfacial capacitance demonstrated moderate frequency and little temperature dependence below T similar to 300 K but a relatively strong frequency and temperature dependence above T similar to3 00 K. This was attributed to the thermal activation of a space charge component combined with a thermally independent background. The activation energy for the space charge was found to be E-A similar to 0.6 eV suggesting de-trapping of electrons from shallow level traps associated with a thin interfacial layer of oxygen vacancies, parallel to the electrodes.
Resumo:
In this study the nature of the interaction between Tween-20 and lactate dehydrogenase (LDH) was investigated using isothermal titration calorimetry (ITC). In addition the effects of the protein and surfactant on the interfacial properties were followed with interfacial rheology and surface tension measurements in order to understand the mechanism by which the surfactant prevents protein adsorption to the air– water interface. Comparisons were made with Tween-40 and Tween-80 in order to further investigate the mechanism. ITC measurements indicated a weak, probably hydrophobic, interaction between Tween-20 and LDH. Prevention of LDH adsorption to the air–water interface by the Tween surfactants was correlated with surface energy rather than surfactant CMC. While surface pressure appears to be the main driving force for the displacement of LDH from the air–water interface by Tween-20 a solubilisation mechanism may exist for other protein molecules. More generally the results of this study highlight the value of the use of ITC and interfacial measurements in characterising the surface behaviour of mixed surfactant and protein systems.
Resumo:
This paper reports a study carried out to assess the impact of the use of self-compacting concrete (SCC) on bond and interfacial properties around steel reinforcement in practical concrete element. The pull-out tests were carried out to determine bond strength between reinforcing steel bar and concrete, and the depth-sensing nano-indentation technique was used to evaluate the elastic modulus and micro-strength of the interracial transition zone (ITZ) around steel reinforcement. The bond and interracial properties around deformed steel bars in different SCC mixes with strength grades of 35 MPa and 60 MPa (C35, C60) were examined together with those in conventional vibrated reference concrete with the same strength grades. The results showed that the maximum bond strength decreased when the diameter of the steel bar increased from 12 to 20 mm. The normalised bond strengths of the SCC mixes were found to be about 10-40% higher than those of the reference mixes for both bar diameters (12 and 20 mm). The study of the interfacial properties revealed that the elastic modulus and the micro-strength of the ITZ were lower on the bottom side of a horizontal steel bar than on the top side, particularly for the vibrated reference concrete. The difference of ITZ properties between top and bottom side of the horizontal steel bar appeared to be less pronounced for the SCC mixes than for the corresponding reference mixes.