13 resultados para IMPENETRABLE BOSONS
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Spinor Bose condensates loaded in optical lattices have a rich phase diagram characterized by different magnetic order. Here we apply the density matrix renormalization group to accurately determine the phase diagram for spin-1 bosons loaded on a one-dimensional lattice. The Mott lobes present an even or odd asymmetry associated to the boson filling. We show that for odd fillings the insulating phase is always in a dimerized state. The results obtained in this work are also relevant for the determination of the ground state phase diagram of the S=1 Heisenberg model with biquadratic interaction.
Resumo:
Bosons interacting repulsively on a lattice with a flat lowest band energy dispersion may, at sufficiently small filling factors, enter into a Wigner-crystal-like phase. This phase is a consequence of the dispersionless nature of the system, which in turn implies the occurrence of single-particle localized eigenstates. We investigate one of these systems-the sawtooth lattice-filled with strongly repulsive bosons at filling factors infinitesimally above the critical point where the crystal phase is no longer the ground state. We find, in the hard-core limit, that the crystal retains its structure in all but one of its cells, where it is broken. The broken cell corresponds to an exotic kind of repulsively bound state, which becomes delocalized. We investigate the excitation spectrum of the system analytically and find that the bound state behaves as a single particle hopping on an effective lattice with reduced periodicity, and is therefore gapless. Thus, the addition of a single particle to a flat-band system at critical filling is found to be enough to make kinetic behavior manifest.
Resumo:
We apply the framework of non-equilibrium quantum thermodynamics to the physics of quenched small-size bosonic quantum gases in a harmonic trap. By studying the temporal behaviour of the Loschmidt echo and of the atomic density profile within the trap, which are informative of the non-equilibrium physics and the correlations among the particles, we establish a link with the statistics of (irreversible) work done on the system. This highlights interesting connections between the degree of inter-particle entanglement and the non-equilibrium thermodynamics of the system.
Resumo:
We address the problem of springlike coupling between bosons in an open-chain configuration where the counter-rotating terms are explicitly included. We show that fruitful insight can be gained by decomposing the time-evolution operator of this problem into a pattern of linear-optics elements. This allows us to provide a clear picture of the effects of the counter-rotating terms in the important problem of long-haul entanglement distribution. The analytic control over the variance matrix of the state of the bosonic register allows us to track the dynamics of the entanglement. This helps in designing a global addressing scheme, complemented by a proper initialization of the register, which quantitatively improves the entanglement between the extremal oscillators in the chain, thus providing a strategy for feasible long-distance entanglement distribution.
Resumo:
The stability of colliding Bose-Einstein condensates is investigated. A set of coupled Gross-Pitaevskii equations is thus considered, and analyzed via a perturbative approach. No assumption is made on the signs ( or magnitudes) of the relevant parameters like the scattering lengths and the coupling coefficients. The formalism is therefore valid for asymmetric as well as symmetric coupled condensate wave states. A new set of explicit criteria is derived and analyzed. An extended instability region, in addition to an enhanced instability growth rate, is predicted for unstable two component bosons, as compared to the individual ( uncoupled) state.
Resumo:
We consider an electrostatic qubit located near a Bose-Einstein condensate (BEC) of noninteracting bosons in a double-well potential, which is used for qubit measurements. Tracing out the BEC variables we obtain a simple analytical expression for the qubit's density matrix. The qubit's evolution exhibits a slow (proportional to 1/root t) damping of the qubit's coherence term, which however turns to be a Gaussian one in the case of static qubit. This is in contrast to the exponential damping produced by most classical detectors. The decoherence is, in general, incomplete and strongly depends on the initial state of the qubit.
Resumo:
A forthcoming challenge in ultracold lattice gases is the simulation of quantum magnetism. That involves both the preparation of the lattice atomic gas in the desired spin state and the probing of the state. Here we demonstrate how a probing scheme based on atom-light interfaces gives access to the order parameters of nontrivial quantum magnetic phases, allowing us to characterize univocally strongly correlated magnetic systems produced in ultracold gases. This method, which is also nondemolishing, yields spatially resolved spin correlations and can be applied to bosons or fermions. As a proof of principle, we apply this method to detect the complete phase diagram displayed by a chain of (rotationally invariant) spin-1 bosons.
Resumo:
The Heisenberg model for spin-1 bosons in one dimension presents many different quantum phases, including the famous topological Haldane phase. Here we study the robustness of such phases in front of a SU(2) symmetry-breaking field as well as the emergence of unique phases. Previous studies have analyzed the effect of such uniaxial anisotropy in some restricted relevant points of the phase diagram. Here we extend those studies and present the complete phase diagram of the spin-1 chain with uniaxial anisotropy. To this aim, we employ the density-matrix renormalization group together with analytical approaches. The complete phase diagram can be realized using ultracold spinor gases in the Mott insulator regime under a quadratic Zeeman effect.
Resumo:
Probing non trivial magnetic ordering in quantum magnets realized with ultracold lattice gases demands detection methods with some spatial resolution built on it. Here we demonstrate that the Faraday matter-light interface provides an experimentally feasible tool to distinguish indubitably different quantum phases of a given many-body system in a non-demolishing way. We illustrate our approach by focussing on the Heisenberg chain for spin-1 bosons in the presence of a SU(2) symmetry breaking field. We explain how using the light signal obtained via homodyne detection one can reconstruct the phase diagram of the model. Further we show that the very same technique that provides a direct experimentally measurable signal of different order parameters can be extended to detect also the presence of multipartite entanglement in such systems.
Resumo:
The Seabury Commission, 1930-32, probed allegations of corruption made against, amongst others, the Irish-American Mayor of New York City, James J. ‘Jimmy’ Walker, and the Irish-dominated Tammany Hall, the Democratic political machine that had supported Walker. Taking the Seabury inquiry as its focus, this article explores these allegations from the perspective of Critical Studies in Improvisation (C.S.I.) fused with postcolonial critique. Improvisation, in accordance with C.S.I. principles, is not a lawless or extempore event; it is, instead, lawful, or full of law. The laws of improvisation may appear impenetrable to those unfamiliar with the practice. However, when read through a hibernocentric postcolonial perspective, their meaning and form become more understandable. As will be argued in this article, diasporic communities are inherently improvisatory; that is, they utilise improvisational techniques to help adapt and respond to new situations and social contexts. To be queried is whether the law and politics practiced by Tammany and Walker, taken together, constituted a markedly Irish approach to justice, one that entailed not scripted or planned illegality, as was alleged by Judge Seabury, but improvisations on Anglo-Protestant law as a response to the displacement of and discrimination against the Irish Diaspora in early twentieth century America.
Resumo:
Historically in Gaelic culture, the bard was greatly valued and admired as an important and integral part of society. Travelled, schooled and specifically trained in their art, the bard helped ensure identity and reassurance for Gaelic families by grounding them both temporarily and spatially into their landscape. Entrusted with the duty and responsibility of recording place and event, the bards worked without writing and by transgressing man-made boundaries, travelled throughout the land weaving their histories into the very fabric of society.
Now no longer with us, we find ourselves without the distinguished chronicler to undertake this duty. Yet the responsibility of the Gaelic bard is one still shared by all artists today; to facilitate memory and identity, whether good or bad. Many Ulster writers, by happenstance and geography have found themselves located in a place of painful histories. An immediate difficulty for those local writers becomes manifest by being intrinsically implicated into those histories – whilst having first-hand knowledge and comprehension beyond that of the outsider, the local writer is automatically damned by association and relationship, thereby tarnishing their voice in comparison to the perceived impartiality of others.
Some writers however have successfully sought ways to escape this limitation and have worked in ways that can transgress the restrictions of prejudgement. John Hewitt, by purposely becoming a self-imposed tourist was able to distance himself to write impartially about the past, recognising that ’the place without its ghosts is a barren place.’1 In ‘The Colony’,2 tradition, peoples and mapping of the land are all narrated by Hewitt in a similar way to the Gaelic bardic topographic poems of Sean O'Dubhagain and Giolla Na Naomh O'Huidhrin3 in compiling a rich cultural atlas.
Similarly the Belfast poet and novelist Ciaran Carson also writes and records the city from an intermediary position; that of translator. Mediating between reader and aisling,4 Carson himself takes the reader on a journey into name, meaning, time and place, focusing primarily on the city of Belfast, familiar in name but impenetrable in depth to most.
Furthermore, this once-forgotten tradition to chronicle is now being continued by the new breed of Irish crime writers where the likes of Brian McGilloway, Stuart Neville and Adrian McKinty can, by way of the crime novel, accurately record contemporary society. Thus, ghost estates, listed buildings, archaeological digs, street and city have all provided setting and subject matter for recent novels. Moreover by choosing the ‘outsider from within’ as their chief protagonist, whether detective or criminal, each author is able to transgress the boundaries of prejudice and preconception that hinder genuine understanding and knowledge.
Looking in turn at the Gaelic bard, the twentieth century Ulster poet and the new breed of Irish crime writer, the authors will outline the real value of the narrator, by being able to act as cultural transgressor beyond the seeming and alleged as the true chronicler in society, and then with specific reference to city and countryside in Ireland, as a valuable custodian of knowledge in architecture and place.
Keywords
Architecture, Crime Fiction, Cultural Atlas, Place, Poetry.
1 From ‘The Bloody Brae’, a one act play written by John Hewitt in the 1930’s.
2 Hewitt, J. (1968) published in Collected Poems 1932-67. London:McGibbon & Kee.
3 Lengthy and detailed medieval Gaelic poems composed in the fourteenth and fifteenth centuries first edited by John O'Donovan in 1862 for the Irish Archaeological and Celtic Society in Dublin.
4 The aisling is the Irish song or poem genre when the poet is visited by their muse in a daydream or dream-vision state.
Resumo:
We investigate the dynamics of two interacting bosons repeatedly scattering off a beam-splitter in a free oscillation atom interferometer. Using the interparticle scattering length and the beam-splitter probabilites as our control parameters, we show that even in a simple setup like this a wide range of strongly correlated quantum states can be created. This in particular includes the NOON state, which maximizes the quantum Fisher information and is a foremost state in quantum metrology. DOI: 10.1103/PhysRevA.87.043630
Resumo:
We study the dynamics of two strongly interacting bosons with an additional impurity atom trapped in a harmonic potential. Using exact numerical diagonalization we are able to fully explore the dynamical evolution when the interaction between the two distinct species is suddenly switched on (quenched). We examine the behavior of the densities, the entanglement, the Loschmidt echo, and the spectral function for a large range of interspecies interactions and find that even in such small systems evidence of Anderson's orthogonality catastrophe can be witnessed.