16 resultados para Hybrid electric cars

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plug-in hybrid electric vehicles (PHEVs) provide much promise in reducing greenhouse gas emissions and, thus, are a focal point of research and development. Existing on-board charging capacity is effective but requires the use of several power conversion devices and power converters, which reduce reliability and cost efficiency. This paper presents a novel three-phase switched reluctance (SR) motor drive with integrated charging functions (including internal combustion engine and grid charging). The electrical energy flow within the drivetrain is controlled by a power electronic converter with less power switching devices and magnetic devices. It allows the desired energy conversion between the engine generator, the battery, and the SR motor under different operation modes. Battery-charging techniques are developed to operate under both motor-driving mode and standstill-charging mode. During the magnetization mode, the machine's phase windings are energized by the dc-link voltage. The power converter and the machine phase windings are controlled with a three-phase relay to enable the use of the ac-dc rectifier. The power converter can work as a buck-boost-type or a buck-type dc-dc converter for charging the battery. Simulation results in MATLAB/Simulink and experiments on a 3-kW SR motor validate the effectiveness of the proposed technologies, which may have significant economic implications and improve the PHEVs' market acceptance

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transport sector is considered to be one of the most dependent sectors on fossil fuels. Meeting ecological, social and economic demands throughout the sector has got increasingly important in recent times. A passenger vehicle with a more environmentally friendly propulsion system is the hybrid electric vehicle. Combining an internal combustion engine and an electric motor offers the potential to reduce carbon dioxide emissions. The overall objective of this research is to provide an appraisal of the use of a micro gas turbine as the range extender in a plug-in hybrid electric vehicle. In this application, the gas turbine can always operate at its most efficient operating point as its only requirement is to recharge the battery. For this reason, it is highly suitable for this purpose. Gas turbines offer many benefits over traditional internal combustion engines which are traditionally used in this application. They offer a high power-to-weight ratio, multi-fuel capability and relatively low emission levels due to continuous combustion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transportation accounts for 22% of greenhouse gas emissions in the UK, and increases to 25% in Northern Ireland. Surface transport carbon dioxide emissions, consisting of road and rail, are dominated by cars. Demand for mobility is rising rapidly and vehicle numbers are expected to more than double by 2050. Car manufacturers are working towards reducing their carbon footprint through improving fuel efficiency and controlling exhaust emissions. Fuel efficiency is now a key consideration of consumers purchasing a new vehicle. While measures have been taken to help to reduce pollutants, in the future, alternative technologies will have to be used in the transportation industry to achieve sustainability. There are currently many alternatives to the market leader, the internal combustion engine. These alternatives include hydrogen fuel cell vehicles and electric vehicles, a term which is widely used to cover battery electric vehicles, plug-in hybrid electric vehicles and extended-range electric vehicles. This study draws direct comparisons measuring the differing performance in terms of fuel consumption, carbon emissions and range of a typical family saloon car using different fuel types. These comparisons will then be analysed to see what effect switching from a conventionally fuelled vehicle to a range extended electric vehicle would have not only on the end user, but also the UK government.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electric vehicles (EV) do not emit tailpipe exhaust fumes in the same manner as internal combustion engine vehicles. Optimal benefits can only be achieved, if EVS are deployed effectively, so that the tailpipe emissions are not substituted by additional emissions in the electricity sector. This paper examines the potential contributions that Plug in Hybrid Electric Vehicles can make in reducing carbon dioxide. The paper presents the results of the generation expansion model for Northern Ireland and the Republic of Ireland built using the dynamic programming based long term generation expansion planning tool called the Wien Automatic System Planning IV tool. The model optimizes power dispatch using hourly electricity demand curves for each year up to 2020, while incorporating generator characteristics and certain operational requirements such as energy not served and loss of load probability while satisfying constraints on environmental emissions, fuel availability and generator operational and maintenance costs. In order to simulate the effect of PHEV, two distinct charging scenarios are applied based on a peak tariff and an off peak tariff. The importance and influence of the charging regime on the amount of energy used and gaseous emissions displaced is determined and discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electric vehicles (EVs) and hybrid electric vehicles (HEVs) are rapidly gaining popularity as a means of de-carbonization in the transport sector in tackling sustainable energy supply and environment pollution problems. To build a proper battery model is essential in predicting battery behaviour under various operating conditions for avoiding unsafe battery operations and developing proper controlling algorithms and maintenance strategies. This paper presents a comprehensive review of battery modelling methods. In particular, the mechanism and characteristics of Li-ion batteries are presented, and different modelling methods are discussed. Considering that equivalent electric circuit models (EECMs) are the most widely used, a detailed analysis of the modelling procedure is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electric vehicles (EVs) and hybrid electric vehicles (HEVs) can reduce greenhouse gas emissions while switched reluctance motor (SRM) is one of the promising motor for such applications. This paper presents a novel SRM fault-diagnosis and fault-tolerance operation solution. Based on the traditional asymmetric half-bridge topology for the SRM driving, the central tapped winding of the SRM in modular half-bridge configuration are introduced to provide fault-diagnosis and fault-tolerance functions, which are set idle in normal conditions. The fault diagnosis can be achieved by detecting the characteristic of the excitation and demagnetization currents. An SRM fault-tolerance operation strategy is also realized by the proposed topology, which compensates for the missing phase torque under the open-circuit fault, and reduces the unbalanced phase current under the short-circuit fault due to the uncontrolled faulty phase. Furthermore, the current sensor placement strategy is also discussed to give two placement methods for low cost or modular structure. Simulation results in MATLAB/Simulink and experiments on a 750-W SRM validate the effectiveness of the proposed strategy, which may have significant implications and improve the reliability of EVs/HEVs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hybrid vehicles can use energy storage systems to disconnect the engine from the driving wheels of the vehicle. This enables the engine to be run closer to its optimum operating condition, but fuel energy is still wasted through the exhaust system as heat. The use of a turbogenerator on the exhaust line addresses this problem by capturing some of the otherwise wasted heat and converting it into useful electrical energy.

This paper outlines the work undertaken to model the engine of a diesel-electric hybrid bus, coupled with a hybrid powertrain model which analysed the performance of a hybrid vehicle over a drive-cycle. The distribution of the turbogenerator power was analysed along with the effect on the fuel consumption of the bus. This showed that including the turbogenerator produced a 2.4% reduction in fuel consumption over a typical drive-cycle.

The hybrid bus generator was then optimised to improve the performance of the combined vehicle/engine package and the turbogenerator was then shown to offer a 3.0% reduction in fuel consumption. The financial benefits of using the turbogenerator were also considered in terms of fuel savings for operators. For an average bus, a turbogenerator could reduce fuel costs by around £1200 per year.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fuel consumption of automotive vehicles has become a prime consideration to manufacturers and operators as fuel prices continue to rise steadily, and legislation governing toxic emissions becomes ever more strict. This is particularly true for bus operators as government fuel subsidies are cut or removed.

In an effort to reduce the fuel consumption of a diesel-electric hybrid bus, an exhaust recovery turbogenerator has been selected from a wide ranging literature review as the most appropriate method of recovering some of the wasted heat in the exhaust line. This paper examines the effect on fuel consumption of a turbogenerator applied to a 2.4-litre diesel engine.

A validated one-dimensional engine model created using Ricardo WAVE was used as a baseline, and was modified in subsequent models to include a turbogenerator downstream, and in series with, the turbocharger turbine. A fuel consumption map of the modified engine was produced, and an in-house simulation tool was then used to examine the fuel economy benefit delivered by the turbogenerator on a bus operating on various drive-cycles.

A parametric study is presented which examined the performance of turbogenerators of various size and power output. The operating strategy of the turbogenerator was also discussed with a view to maximising turbine efficiency at each operating point.

The performance of the existing turbocharger on the hybrid bus was also investigated; both the compressor and turbine were optimised and the subsequent benefits to the fuel consumption of the vehicle were shown.

The final configuration is then presented and the overall improvement in fuel economy of the hybrid bus was determined over various drive-cycles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transport accounts for 22% of greenhouse gas emissions in the United Kingdom and cars are expected tomore than double by 2050. Car manufacturers are continually aiming for a substantially reduced carbonfootprint through improved fuel efficiency and better powertrain performance due to the strict EuropeanUnion emissions standards. However, road tax, not just fuel efficiency, is a key consideration of consumerswhen purchasing a car. While measures have been taken to reduce emissions through stricter standards, infuture, alternative technologies will be used. Electric vehicles, hybrid vehicles and range extended electricvehicles have been identified as some of these future technologies. In this research a virtual test bed of aconventional internal combustion engine and a range extended electric vehicle family saloon car were builtin AVL’s vehicle and powertrain system level simulation tool, CRUISE, to simulate the New EuropeanDrive Cycle and the results were then soft-linked to a techno-economic model to compare the effectivenessof current support mechanisms over the full life cycle of both cars. The key finding indicates that althoughcarbon emissions are substantially reduced, switching is still not financially the best option for either theconsumer or the government in the long run.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The European Union has set a target for 10% renewable energy in transport by 2020 to be met using biofuels and electric vehicles. In the case of biofuels, the biofuel must achieve greenhouse gas savings of 35% relative to the fossil fuel replaced. For biofuels, greenhouse gas savings can be calculated using life cycle analysis or the European Union default values. In contrast, all electricity used in transport is considered to be the same, regardless of the source or the type of electric vehicle. However, the choice of the electric vehicle and electricity source will have a major impact on the greenhouse gas saving. In this paper the initial findings of a well-to-wheel analysis of electric vehicle deployment in Northern Ireland are presented. The key finding indicates that electric vehicles require least amount of energy per mile on a well-to-wheel basis, consume the fewest resources, even accommodating inefficient fuel production, in comparison to standard internal combustion engine and hybrid vehicles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural gas (NG) network and electric network are becoming tightly integrated by microturbines in the microgrid. Interactions between these two networks are not well captured by the traditional microturbine (MT) models. To address this issue, two improved models for single-shaft MT and split-shaft MT are proposed in this paper. In addition, dynamic models of the hybrid natural gas and electricity system (HGES) are developed for the analysis of their interactions. Dynamic behaviors of natural gas in pipes are described by partial differential equations (PDEs), while the electric network is described by differential algebraic equations (DAEs). So the overall network is a typical two-time scale dynamic system. Numerical studies indicate that the two-time scale algorithm is faster and can capture the interactions between the two networks. The results also show the HGES with a single-shaft MT is a weakly coupled system in which disturbances in the two networks mainly influence the dc link voltage of the MT, while the split-shaft MT is a strongly coupled system where the impact of an event will affect both networks.