152 resultados para Hinge-bending Motion

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We calculate near-threshold bound states and Feshbach resonance positions for atom–rigid-rotor models of the highly anisotropic systems Li+CaH and Li+CaF. We perform statistical analysis on the resonance positions to compare with the predictions of random matrix theory. For Li+CaH with total angular momentum J=0 we find fully chaotic behavior in both the nearest-neighbor spacing distribution and the level number variance. However, for J>0 we find different behavior due to the presence of a nearly conserved quantum number. Li+CaF (J=0) also shows apparently reduced levels of chaotic behavior despite its stronger effective coupling. This may indicate the development of another good quantum number relating to a bending motion of the complex. However, continuously varying the rotational constant over a wide range shows unexpected structure in the degree of chaotic behavior, including a dramatic reduction around the rotational constant of CaF. This demonstrates the complexity of the relationship between coupling and chaotic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the importance of laughter in social interactions it remains little studied in affective computing. Respiratory, auditory, and facial laughter signals have been investigated but laughter-related body movements have received almost no attention. The aim of this study is twofold: first an investigation into observers' perception of laughter states (hilarious, social, awkward, fake, and non-laughter) based on body movements alone, through their categorization of avatars animated with natural and acted motion capture data. Significant differences in torso and limb movements were found between animations perceived as containing laughter and those perceived as nonlaughter. Hilarious laughter also differed from social laughter in the amount of bending of the spine, the amount of shoulder rotation and the amount of hand movement. The body movement features indicative of laughter differed between sitting and standing avatar postures. Based on the positive findings in this perceptual study, the second aim is to investigate the possibility of automatically predicting the distributions of observer's ratings for the laughter states. The findings show that the automated laughter recognition rates approach human rating levels, with the Random Forest method yielding the best performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bonded-in rod connections in timber possess many desirable attributes in terms of efficiency, manufacture, performance, aesthetics and cost. In recent years research has been conducted on such connections using fibre reinforced polymers (FRPs) as an alternative to steel. This research programme investigates the pull-out capacity of Basalt FRP rods bonded-in in low grade Irish Sitka Spruce. Embedded length is thought to be the most influential variable contributing to pull- out capacity of bonded-in rods after rod diameter. Previous work has established an optimum embedded length of 15 times the hole diameter. However, this work only considered the effects of axial stress on the bond using a pull-compression testing system which may have given an artificially high pull out capacity as bending effects were neglected. A hinge system was utilised that allows the effects of bending force to be taken in to consideration along with axial forces in a pull-out test. This paper describes an experimental programme where such pull-bending tests were carried out on samples constructed of 12mm diameter BFRP bars with a 2mm glueline thickness and embedded lengths between 80mm and 280mm bonded-in to low-grade timber with an epoxy resin. Nine repetitions of each were tested. A clear increase in pull-out strength was found with increasing embedded length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have examined the ability of observers to parse bimodal local-motion distributions into two global motion surfaces, either overlapping (yielding transparent motion) or spatially segregated (yielding a motion boundary). The stimuli were random dot kinematograms in which the direction of motion of each dot was drawn from one of two rectangular probability distributions. A wide range of direction distribution widths and separations was tested. The ability to discriminate the direction of motion of one of the two motion surfaces from the direction of a comparison stimulus was used as an objective test of the perception of two discrete surfaces. Performance for both transparent and spatially segregated motion was remarkably good, being only slightly inferior to that achieved with a single global motion surface. Performance was consistently better for segregated motion than for transparency. Whereas transparent motion was only perceived with direction distributions which were separated by a significant gap, segregated motion could be seen with abutting or even partially overlapping direction distributions. For transparency, the critical gap increased with the range of directions in the distribution. This result does not support models in which transparency depends on detection of a minimum size of gap defining a bimodal direction distribution. We suggest, instead, that the operations which detect bimodality are scaled (in the direction domain) with the overall range of distributions. This yields a flexible, adaptive system that determines whether a gap in the direction distribution serves as a segmentation cue or is smoothed as part of a unitary computation of global motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms underlying the parsing of a spatial distribution of velocity vectors into two adjacent (spatially segregated) or overlapping (transparent) motion surfaces were examined using random dot kinematograms. Parsing might occur using either of two principles. Surfaces might be defined on the basis of similarity of motion vectors and then sharp perceptual boundaries drawn between different surfaces (continuity-based segmentation). Alternatively, detection of a high gradient of direction or speed separating the motion surfaces might drive the process (discontinuity-based segmentation). To establish which method is used, we examined the effect of blurring the motion direction gradient. In the case of a sharp direction gradient, each dot had one of two directions differing by 135°. With a shallow gradient, most dots had one of two directions but the directions of the remainder spanned the range between one motion-defined surface and the other. In the spatial segregation case the gradient defined a central boundary separating two regions. In the transparent version the dots were randomly positioned. In both cases all dots moved with the same speed and existed for only two frames before being randomly replaced. The ability of observers to parse the motion distribution was measured in terms of their ability to discriminate the direction of one of the two surfaces. Performance was hardly affected by spreading the gradient over at least 25% of the dots (corresponding to a 1° strip in the segregation case). We conclude that detection of sharp velocity gradients is not necessary for distinguishing different motion surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motion transparency provides a challenging test case for our understanding of how visual motion, and other attributes, are computed and represented in the brain. However, previous studies of visual transparency have used subjective criteria which do not confirm the existence of independent representations of the superimposed motions. We have developed measures of performance in motion transparency that require observers to extract information about two motions jointly, and therefore test the information that is simultaneously represented for each motion. Observers judged whether two motions were at 90 to one another; the base direction was randomized so that neither motion taken alone was informative. The precision of performance was determined by the standard deviations (S.D.s) of probit functions fitted to the data. Observers also made judgments of orthogonal directions between a single motion stream and a line, for one of two transparent motions against a line and for two spatially segregated motions. The data show that direction judgments with transparency can be made with comparable accuracy to segregated (non-transparent) conditions, supporting the idea that transparency involves the equivalent representation of two global motions in the same region. The precision of this joint direction judgment is, however, 2–3 times poorer than that for a single motion stream. The precision in directional judgment for a single stream is reduced only by a factor of about 1.5 by superimposing a second stream. The major effect in performance, therefore, appears to be associated with the need to compute and compare two global representations of motion, rather than with interference between the dot streams per se. Experiment 2tested the transparency of motions separated by a range of angles from 5 to 180 by requiring subjects to set a line matching the perceived direction of each motion. The S.D.s of these settings demonstrated that directions of transparent motions were represented independently for separations over 20. Increasing dot speeds from 1 to 10 deg/s improved directional performance but had no effect on transparency perception. Transparency was also unaffected by variations of density between 0.1 and 19 dots/deg2

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of relative motion information when modelling a novel motor skill was examined. Participants were assigned to one of four groups. Groups 1 and 2 viewed demonstrations of a skilled cricket bowler presented in either video or point light format. Group 3 observed a single point of light pertaining to the wrist of the skilled bowler only. Participants in Group 4 did not receive a demonstration and acted as controls. During 60 acquisition trials, participants in the demonstration groups viewed a model five times before each 10-trial block. Retention was examined the following day. Intra-limb coordination was assessed for the right elbow relative to the wrist in comparison to the model. The demonstration groups showed greater concordance with the model than the control group. However, the wrist group performed less like the model than the point light and video groups, who did not differ from each other. These effects were maintained in retention. Relative motion information aided the acquisition of intra-limb coordination, while making this information more salient (through point lights) provided no additional benefit. The motion of the models bowling arm was replicated more closely than the non-bowling arm, suggesting that information from the end-effector is prioritized during observation for later reproduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a speed-matching task, we measured the speed tuning of the dynamic motion aftereVect (MAE). The results of our Wrst experiment, in which we co-varied dot speed in the adaptation and test stimuli, revealed a speed tuning function. We sought to tease apart what contribution, if any, the test stimulus makes towards the observed speed tuning. This was examined by independently manipulating dot speed in the adaptation and test stimuli, and measuring the eVect this had on the perceived speed of the dynamic MAE. The results revealed that the speed tuning of the dynamic MAE is determined, not by the speed of the adaptation stimulus, but by the local motion characteristics of the dynamic test stimulus. The role of the test stimulus in determining the perceived speed of the dynamic MAE was conWrmed by showing that, if one uses a test stimulus containing two sources of local speed information, observers report seeing a transparent MAE; this is despite the fact that adaptation is induced using a single-speed stimulus. Thus while the adaptation stimulus necessarily determines perceived direction of the dynamic MAE, its perceived speed is determined by the test stimulus. This dissociation of speed and direction supports the notion that the processing of these two visual attributes may be partially independent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The processing of motion information by the visual system can be decomposed into two general stages; point-by-point local motion extraction, followed by global motion extraction through the pooling of the local motion signals. The direction aftereVect (DAE) is a well known phenomenon in which prior adaptation to a unidirectional moving pattern results in an exaggerated perceived direction diVerence between the adapted direction and a subsequently viewed stimulus moving in a diVerent direction. The experiments in this paper sought to identify where the adaptation underlying the DAE occurs within the motion processing hierarchy. We found that the DAE exhibits interocular transfer, thus demonstrating that the underlying adapted neural mechanisms are binocularly driven and must, therefore, reside in the visual cortex. The remaining experiments measured the speed tuning of the DAE, and used the derived function to test a number of local and global models of the phenomenon. Our data provide compelling evidence that the DAE is driven by the adaptation of motion-sensitive neurons at the local-processing stage of motion encoding. This is in contrast to earlier research showing that direction repulsion, which can be viewed as a simultaneous presentation counterpart to the DAE, is a global motion process. This leads us to conclude that the DAE and direction repulsion reflect interactions between motion-sensitive neural mechanisms at different levels of the motion-processing hierarchy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the advent of new video standards such as MPEG-4 part-10 and H.264/H.26L, demands for advanced video coding, particularly in the area of variable block size video motion estimation (VBSME), are increasing. In this paper, we propose a new one-dimensional (1-D) very large-scale integration architecture for full-search VBSME (FSVBSME). The VBS sum of absolute differences (SAD) computation is performed by re-using the results of smaller sub-block computations. These are distributed and combined by incorporating a shuffling mechanism within each processing element. Whereas a conventional 1-D architecture can process only one motion vector (MV), this new architecture can process up to 41 MV sub-blocks (within a macroblock) in the same number of clock cycles.