18 resultados para Heat recovery

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In any internal combustion engine, the amount of heat rejected from the engine, and associated systems, is a result of the engine inefficiency. Successfully recovering a small proportion of this energy would therefore substantially improve the fuel economy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the rational for the selection of fluids for use in a model based study of sub and supercritical Waste Heat Recovery (WHR) Organic Rankine Cycle (ORC). The study focuses on multiple vehicle heat sources and the potential of WHR ORC’s for its conversion into useful work. The work presented on fluid selection is generally applicable to any waste heat recovery system, either stationary or mobile and, with careful consideration, is also applicable to single heat sources. The fluid selection process presented reduces the number of potential fluids from over one hundred to a group of under twenty fluids for further refinement in a model based WHR ORC performance study. The selection process uses engineering judgement, legislation and, where applicable, health and safety as fluid selection or de-selection criteria. This paper also investigates and discusses the properties of specific ORC fluids with regard to their impact on the theoretical potential for delivering efficient WHR ORC work output. The paper concludes by looking at potential temperature and pressure WHR ORC limits with regard to fluid properties thereby assisting with the generation of WHR ORC simulation boundary conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evaporator is an important component in the Organic Rankine Cycle (ORC)-based Waste Heat Recovery (WHR) system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The internal combustion (IC) engines exploits only about 30% of the chemical energy ejected through combustion, whereas the remaining part is rejected by means of cooling system and exhausted gas. Nowadays, a major global concern is finding sustainable solutions for better fuel economy which in turn results in a decrease of carbon dioxide (CO2) emissions. The Waste Heat Recovery (WHR) is one of the most promising techniques to increase the overall efficiency of a vehicle system, allowing the recovery of the heat rejected by the exhaust and cooling systems. In this context, Organic Rankine Cycles (ORCs) are widely recognized as a potential technology to exploit the heat rejected by engines to produce electricity. The aim of the present paper is to investigate a WHR system, designed to collect both coolant and exhausted gas heats, coupled with an ORC cycle for vehicle applications. In particular, a coolant heat exchanger (CLT) allows the heat exchange between the water coolant and the ORC working fluid, whereas the exhausted gas heat is recovered by using a secondary circuit with diathermic oil. By using an in-house numerical model, a wide range of working conditions and ORC design parameters are investigated. In particular, the analyses are focused on the regenerator location inside the ORC circuits. Five organic fluids, working in both subcritical and supercritical conditions, have been selected in order to detect the most suitable configuration in terms of energy and exergy efficiencies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hybrid vehicles can use energy storage systems to disconnect the engine from the driving wheels of the vehicle. This enables the engine to be run closer to its optimum operating condition, but fuel energy is still wasted through the exhaust system as heat. The use of a turbogenerator on the exhaust line addresses this problem by capturing some of the otherwise wasted heat and converting it into useful electrical energy.

This paper outlines the work undertaken to model the engine of a diesel-electric hybrid bus, coupled with a hybrid powertrain model which analysed the performance of a hybrid vehicle over a drive-cycle. The distribution of the turbogenerator power was analysed along with the effect on the fuel consumption of the bus. This showed that including the turbogenerator produced a 2.4% reduction in fuel consumption over a typical drive-cycle.

The hybrid bus generator was then optimised to improve the performance of the combined vehicle/engine package and the turbogenerator was then shown to offer a 3.0% reduction in fuel consumption. The financial benefits of using the turbogenerator were also considered in terms of fuel savings for operators. For an average bus, a turbogenerator could reduce fuel costs by around £1200 per year.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the background rationale and key findings for a model-based study of supercritical waste heat recovery organic Rankine cycles. The paper’s objective is to cover the necessary groundwork to facilitate the future operation of a thermodynamic organic Rankine cycle model under realistic thermodynamic boundary conditions for performance optimisation of organic Rankine cycles. This involves determining the type of power cycle for organic Rankine cycles, the circuit configuration and suitable boundary conditions. The study focuses on multiple heat sources from vehicles but the findings are generally applicable, with careful consideration, to any waste heat recovery system. This paper introduces waste heat recovery and discusses the general merits of organic fluids versus water and supercritical operation versus subcritical operation from a theoretical perspective and, where possible, from a practical perspective. The benefits of regeneration are investigated from an efficiency perspective for selected subcritical and supercritical conditions. A simulation model is described with an introduction to some general Rankine cycle boundary conditions. The paper describes the analysis of real hybrid vehicle data from several driving cycles and its manipulation to represent the thermal inertia for model heat input boundary conditions. Basic theory suggests that selecting the operating pressures and temperatures to maximise the Rankine cycle performance is relatively straightforward. However, it was found that this may not be the case for an organic Rankine cycle operating in a vehicle. When operating in a driving cycle, the available heat and its quality can vary with the power output and between heat sources. For example, the available coolant heat does not vary much with the load, whereas the quantity and quality of the exhaust heat varies considerably. The key objective for operation in the vehicle is optimum utilisation of the available heat by delivering the maximum work out. The fluid selection process and the presentation and analysis of the final results of the simulation work on organic Rankine cycles are the subjects of two future publications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a significant lack of indoor air quality research in low energy homes. This study compared the indoor air quality of eight
newly built case study homes constructed to similar levels of air-tightness and insulation; with two different ventilation strategies (four homes with Mechanical Ventilation with Heat Recovery (MVHR) systems/Code level 4 and four homes naturally ventilated/Code level 3). Indoor air quality measurements were conducted over a 24 h period in the living room and main bedroom of each home during the summer and winter seasons. Simultaneous outside measurements and an occupant diary were also employed during the measurement period. Occupant interviews were conducted to gain information on perceived indoor air quality, occupant behaviour and building related illnesses. Knowledge of the MVHR system including ventilation related behaviour was also studied. Results suggest indoor air quality problems in both the mechanically ventilated and naturally ventilated homes, with significant issues identified regarding occupant use in the social homes