168 resultados para HPLC-FLD
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Despite ethical and technical concerns, the in vivo method, or more commonly referred to mouse bioassay (MBA), is employed globally as a reference method for phycotoxin analysis in shellfish. This is particularly the case for paralytic shellfish poisoning (PSP) and emerging toxin monitoring. A high-performance liquid chromatography method (HPLC-FLD) has been developed for PSP toxin analysis, but due to difficulties and limitations in the method, this procedure has not been fully implemented as a replacement. Detection of the diarrhetic shellfish poisoning (DSP) toxins has moved towards LC-mass spectrometry (MS) analysis, whereas the analysis of the amnesic shellfish poisoning (ASP) toxin domoic acid is performed by HPLC. Although alternative methods of detection to the MBA have been described, each procedure is specific for a particular toxin and its analogues, with each group of toxins requiring separate analysis utilising different extraction procedures and analytical equipment. In addition, consideration towards the detection of unregulated and emerging toxins on the replacement of the MBA must be given. The ideal scenario for the monitoring of phycotoxins in shellfish and seafood would be to evolve to multiple toxin detection on a single bioanalytical sensing platform, i.e. 'an artificial mouse'. Immunologically based techniques and in particular surface plasmon resonance technology have been shown as a highly promising bioanalytical tool offering rapid, real-time detection requiring minimal quantities of toxin standards. A Biacore Q and a prototype multiplex SPR biosensor have been evaluated for their ability to be fit for purpose for the simultaneous detection of key regulated phycotoxin groups and the emerging toxin palytoxin. Deemed more applicable due to the separate flow channels, the prototype performance for domoic acid, okadaic acid, saxitoxin, and palytoxin calibration curves in shellfish achieved detection limits (IC20) of 4,000, 36, 144 and 46 μg/kg of mussel, respectively. A one-step extraction procedure demonstrated recoveries greater than 80 % for all toxins. For validation of the method at the 95 % confidence limit, the decision limits (CCα) determined from an extracted matrix curve were calculated to be 450, 36 and 24 μg/kg, and the detection capability (CCβ) as a screening method is ≤10 mg/kg, ≤160 μg/kg and ≤400 μg/kg for domoic acid, okadaic acid and saxitoxin, respectively.
Resumo:
Harmful algal blooms (HABs) are a natural global phenomena emerging in severity and extent. Incidents have many economic, ecological and human health impacts. Monitoring and providing early warning of toxic HABs are critical for protecting public health. Current monitoring programmes include measuring the number of toxic phytoplankton cells in the water and biotoxin levels in shellfish tissue. As these efforts are demanding and labour intensive, methods which improve the efficiency are essential. This study compares the utilisation of a multitoxin surface plasmon resonance (multitoxin SPR) biosensor with enzyme-linked immunosorbent assay (ELISA) and analytical methods such as high performance liquid chromatography with fluorescence detection (HPLC-FLD) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for toxic HAB monitoring efforts in Europe. Seawater samples (n = 256) from European waters, collected 2009-2011, were analysed for biotoxins: saxitoxin and analogues, okadaic acid and dinophysistoxins 1/2 (DTX1/DTX2) and domoic acid responsible for paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP), respectively. Biotoxins were detected mainly in samples from Spain and Ireland. France and Norway appeared to have the lowest number of toxic samples. Both the multitoxin SPR biosensor and the RNA microarray were more sensitive at detecting toxic HABs than standard light microscopy phytoplankton monitoring. Correlations between each of the detection methods were performed with the overall agreement, based on statistical 2 × 2 comparison tables, between each testing platform ranging between 32% and 74% for all three toxin families illustrating that one individual testing method may not be an ideal solution. An efficient early warning monitoring system for the detection of toxic HABs could therefore be achieved by combining both the multitoxin SPR biosensor and RNA microarray.
Resumo:
Abstract An HPLC method has been developed and validated for the determination of spironolactone, 7a-thiomethylspirolactone and canrenone in paediatric plasma samples. The method utilises 200 µl of plasma and sample preparation involves protein precipitation followed by Solid Phase Extraction (SPE). Determination of standard curves of peak height ratio (PHR) against concentration was performed by weighted least squares linear regression using a weighting factor of 1/concentration2. The developed method was found to be linear over concentration ranges of 30–1000 ng/ml for spironolactone and 25–1000 ng/ml for 7a-thiomethylspirolactone and canrenone. The lower limit of quantification for spironolactone, 7a-thiomethylspirolactone and canrenone were calculated as 28, 20 and 25 ng/ml, respectively. The method was shown to be applicable to the determination of spironolactone, 7a-thiomethylspirolactone and canrenone in paediatric plasma samples and also plasma from healthy human volunteers.
Resumo:
BACKGROUND:
The protein components of GCF can be separated by reverse-phase microbore HPLC on a C18 column with detection on the basis of 214 nm absorbance. A single major symmetrical protein peak eluting with a retention time of 26 min (50% acetonitrile) was evident in gingival crevicular fluid (GCF) from periodontitis patients but not in healthy GCF. This protein was identified as human MRP-8 by N-terminal amino acid sequencing and liquid chromatography quadropole mass spectrometry.
AIMS:
To quantify the amount of MRP-8 detectable in GCF from individual healthy, gingivitis and periodontitis affected sites and to study the relationship, if any, between the levels of this responsive protein and periodontal health and disease.
METHODS:
GCF was sampled (30 s) from healthy, gingivitis, and periodontitis sites in peridontitis subjects (n=15) and from controls (n=5) with clinically healthy gingiva and no periodontitis. Purified MRP-8 was sequenced by Edmann degradation and the phenylthiohydantoin (PTH) amino acid yield determined (by comparison of peak area with external PTH amino acid standards). This value was subsequently used to calculate the relative amount of protein in the peak eluting with a retention time of 26.0 min (MRP-8) in individual GCF chromatograms.
RESULTS:
Higher levels of MRP-8 were detected in inflammatory sites: periodontitis 457.0 (281.0) ng; gingivitis 413.5 (394.5) ng compared with periodontally healthy sites in diseased subjects 14.6 (14.3) ng and in controls 18.6 (18.5) ng, p=0.003. There was at least 20-fold more MRP-8 in the inflammatory compared with the healthy sites studied.
CONCLUSIONS:
The preliminary data indicate that MRP-8 is present in GCF, with significantly greater amounts present at diseased than healthy sites. A systematic study of the relationship of this protein to periodontal disease could prove useful in further clarifying whether MRP-8 could be a reliable GCF biomarker of gingivitis and periodontitis.
Resumo:
An HPLC method has been developed and validated for the rapid determination of mercaptopurine and four of its metabolites; thioguanine, thiouric acid, thioxanthine and methylmercaptopurine in plasma and red blood cells. The method involves a simple treatment procedure based on deproteinisation by perchloric acid followed by acid hydrolysis and heating for 45 min at 100 degrees C. The developed method was linear over the concentration range studied with a correlation coefficient >0.994 for all compounds in both plasma and erythrocytes. The lower limits of quantification were 13, 14, 3, 2, 95 pmol/8 x 101 RBCs and 2, 5, 2, 3, 20 ng/ml plasma for thioguanine, thiouric acid, mercaptopurine, thioxanthine and methylmercaptopurine, respectively. The method described is selective and sensitive enough to analyse the different metabolites in a single run under isocratic conditions. Furthermore, it has been shown to be applicable for monitoring these metabolites in paediatric patients due to the low volume requirement (200 mu l of plasma or erythrocytes) and has been successfully applied for investigating population pharmacokinetics, pharmacogenetics and non-adherence to therapy in these patients. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background: Epidermal growth factor receptor gene (EGFR) variants may be useful markers for identifying responders to gefitinib and erlotinib, small-molecule tyrosine kinase inhibitors of EGFR; therefore, sensitive and cost-effective assays are needed to detect EGFR variants in routine clinical samples. We have developed a partially denaturing HPLC (pDHPLC) assay that is superior to direct sequencing with respect to detection limits, costs, and time requirements.
Resumo:
Racemic (1R*,2R*)-1,2-dihydroxy-[1- 13C 1]propylphosphonic acid and 1-hydroxy-[1- 13C 1]acetone were synthesized and fed to R. huakuii PMY1. Alanine and a mixture of valine and methionine were isolated as their N-acetyl derivatives from the cell hydrolysate by reversed-phase HPLC and analyzed by NMR spectroscopy. It was found that the carbon atoms of the respective carboxyl groups were highly 13C-labeled (up to 65 %). Hydroxyacetone is therefore considered an obligatory intermediate of the biodegradation of fosfomycin by R. huakuii PMY1.
Resumo:
A novel stir bar sorptive extraction (SBSE) method coupled with high performance liquid chromatography (HPLC) and UV detection for the extraction of diclofenac (DIC) from paediatric urine samples has been developed and validated. Selectivity and sensitivity being the prime objectives of the bioanalytical method for clinical samples, an optimised SBSE protocol was developed that selectively extracted DIC from various concurrently administered drugs. The validated assay was found to be linear (r=0.9999) over a concentration range of 100-2000 ng mL(-1). SBSE showed consistent recoveries (similar to 70%) of DIC across the validated linearity range. Overall, the method exhibited excellent accuracy and precision across all QC concentrations, tested over three days. Calculated LOD and LOQ were found to be 12.03 ng mL(-1) and 36.37 ng mL(-1), respectively, however, for the experimental purposes, 100 ngmL(-1) was considered as the validated LOQ(accuracy and precision at this LQC was
Resumo:
Depletion of the nitrofuran antibiotics furazolidone, furaltadone, nitrofurantoin and nitrofurazone and their tissue-bound metabolites AOZ, AMOZ, AHD and SEM from pig muscle, liver and kidney tissues is described. Groups of pigs were given feed medicated with one of the nitrofuran drugs at a therapeutic concentration (400 mg kg(-1)) for ten days. Animals were slaughtered at intervals and tissue samples collected for analysis for six weeks following withdrawal of medicated feed. These samples were analysed both for parent nitrofurans (using LC-MS/MS and HPLC-UV), and for tissue-bound metabolites (using LC-MS/MS). The parent drugs were detectable only sporadically and only in pigs subjected to no withdrawal period whatsoever. This confirms the instability of the four major nitrofuran antibiotics in edible tissues. In contrast, the metabolites accumulated to high concentrations in tissues (ppm levels) and had depletion half lives of between 5.5 and 15.5 days. The metabolites of all four drugs were still readily detectable in tissues six weeks after cessation of treatment. This emphasizes the benefits of monitoring for the stable metabolites of the nitrofurans.
Resumo:
Mercury in plants or animal tissue is supposed to occur in the form of complexes formed with biologically relevant thiols (biothiols), rather than as free cation. We describe a technique for the separation and molecular identification of mercury and methylmercury complexes derived from their reactions with cysteine (Cys) and glutathione (GS): Hg(Cys)(2), Hg(GS)(2), MeHgCys, MeHgGS. Complexes were characterised by electrospray mass spectrometry (MS) equipped with an ion trap and the fragmentation pattern of MeHgCys was explained by using MP2 and B3LYP calculations, showing the importance of mercury-amine interactions in the gas phase. Chromatographic baseline separation was performed within 10 min with formic acid as the mobile phase on a reversed-phase column. Detection was done by online simultaneous coupling of ES-MS and inductively coupled plasma MS. When the mercury complexes were spiked in real samples (plant extracts), no perturbation of the separation and detection conditions was observed, suggesting that this method is capable of detecting mercury biothiol complexes in plants.
Resumo:
Essential to the conduct of epidemiologic studies examining aflatoxin exposure and the risk of heptocellular carcinoma, impaired growth, and acute toxicity has been the development of quantitative biomarkers of exposure to aflatoxins, particularly aflatoxin B-1. In this study, identical serum sample sets were analyzed for aflatoxin-albumin adducts by ELISA, high-performance liquid chromatography (HPLC) with fluorescence detection (HPLC-f), and HPLC with isotope dilution mass spectrometry (IDMS). The human samples analyzed were from an acute aflatoxicosis outbreak in Kenya in 2004 (n = 102) and the measured values ranged from 0.018 to 67.0, nondetectable to 13.6, and 0.002 to 17.7 ng/mg albumin for the respective methods. The Deming regression slopes for the HPLC-f and ELISA concentrations as a function of the IDMS concentrations were 0.71 (r(2) = 0.95) and 3.3 (r(2) = 0.96), respectively. When the samples were classified as cases or controls, based on clinical diagnosis, all methods were predictive of outcome (P < 0.01). Further, to evaluate assay precision, duplicate samples were prepared at three levels by dilution of an exposed human sample and were analyzed on three separate days. Excluding one assay value by ELISA and one assay by HPLC-f, the overall relative SD were 8.7%, 10.5%, and 9.4% for IDMS, HPLC-f, and ELISA, respectively. IDMS was the most sensitive technique and HPLC-f was the least sensitive method. Overall, this study shows an excellent correlation between three independent methodologies conducted in different laboratories and supports the validation of these technologies for assessment of human exposure to this environmental toxin and carcinogen.