36 resultados para Geometric morphometry
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Simultaneous contrast effects have been found across a wide range of visual dimensions. We describe a simultaneous contrast effect - three-dimensional curvature contrast - in which the apparent curvature of a surface defined by shading and texture information is influenced by the curvature of a surrounding surface. The effect is strong and easily measurable. We asked whether the effect depends upon the presence of contrast at the level of the internal representation of surface curvature or whether it could be better explained in terms of local changes in the apparent brightness of regions within the test patches induced by luminance transition at the borders. The experimental results suggest that, whicle these luminance-contrast-induced effects do contribute to the observed changes in perceived curvature, there are additional influences. In particular changes in perceived curvature induced by a pattern of curved patches were eliminated or considerably weakened when the inducing pattern was transformed into a photographic negative, a procedure which disrupts the apparent three-dimensional structure of the surface patches without changing their brightness contrast. This suggests a component of the illusion involves comparisons at the level of representation of surface curvature. The observation that three-dimensional curvature contrast presists when the inducing surfaces are spatially separate from the test surface suggests that shape perception involves global, as well as local, operations.
Resumo:
The histological grading of cervical intraepithelial neoplasia (CIN) remains subjective, resulting in inter- and intra-observer variation and poor reproducibility in the grading of cervical lesions. This study has attempted to develop an objective grading system using automated machine vision. The architectural features of cervical squamous epithelium are quantitatively analysed using a combination of computerized digital image processing and Delaunay triangulation analysis; 230 images digitally captured from cases previously classified by a gynaecological pathologist included normal cervical squamous epithelium (n = 30), koilocytosis (n = 46), CIN 1 (n = 52), CIN 2 (n = 56), and CIN 3 (n=46). Intra- and inter-observer variation had kappa values of 0.502 and 0.415, respectively. A machine vision system was developed in KS400 macro programming language to segment and mark the centres of all nuclei within the epithelium. By object-oriented analysis of image components, the positional information of nuclei was used to construct a Delaunay triangulation mesh. Each mesh was analysed to compute triangle dimensions including the mean triangle area, the mean triangle edge length, and the number of triangles per unit area, giving an individual quantitative profile of measurements for each case. Discriminant analysis of the geometric data revealed the significant discriminatory variables from which a classification score was derived. The scoring system distinguished between normal and CIN 3 in 98.7% of cases and between koilocytosis and CIN 1 in 76.5% of cases, but only 62.3% of the CIN cases were classified into the correct group, with the CIN 2 group showing the highest rate of misclassification. Graphical plots of triangulation data demonstrated the continuum of morphological change from normal squamous epithelium to the highest grade of CIN, with overlapping of the groups originally defined by the pathologists. This study shows that automated location of nuclei in cervical biopsies using computerized image analysis is possible. Analysis of positional information enables quantitative evaluation of architectural features in CIN using Delaunay triangulation meshes, which is effective in the objective classification of CIN. This demonstrates the future potential of automated machine vision systems in diagnostic histopathology. Copyright (C) 2000 John Wiley and Sons, Ltd.
Resumo:
Published ab-initio and pseudopotential calculations for the dialkali halide systems suggest that the preferred co-linear geometry is for the metal to approach the metal end of the alkali halide. Here, ab-initio calculations on the Li2F system reveal that the well depth on the halide side in this radical is much deeper and is a local saddle-point associated with the ionic non-linear global minima. Although many features of the pseudopotential surfaces are confirmed, significant differences are apparent including the existence of a linear excited state instead of a triangular one, a considerably deeper global minimum some 50% lower in energy and a close approach between the X2A1 and the states, with the minimum 87 kJ mol-1 below the ground state asymptote. All the results can be rationalised as the avoided crossings between a long range, covalent potential dominant within the LiLiF geometry and an ionic state that forms the global minimum. Calculations on the 3rd 2A' potential indicate that even for Li + LiF collisions at ultracold temperatures the collision dynamics could involve as many as three electronic states.
Resumo:
Margins are used in radiotherapy to assist in the calculation of planning target volumes. These margins can be determined by analysing the geometric uncertainties inherent to the radiotherapy planning and delivery process. An important part of this process is the study of electronic portal images collected throughout the course of treatment. Set-up uncertainties were determined for prostate radiotherapy treatments at our previous site and the new purpose-built centre, with margins determined using a number of different methods. In addition, the potential effect of reducing the action level from 5 mm to 3 mm for changing a patient set-up, based on off-line bony anatomy-based portal image analysis, was studied. Margins generated using different methodologies were comparable. It was found that set-up errors were reduced following relocation to the new centre. Although a significant increase in the number of corrections to a patient's set-up was predicted if the action level was reduced from 5 mm to 3 mm, minimal reduction in patient set-up uncertainties would be seen as a consequence. Prescriptive geometric uncertainty analysis not only supports calculation and justification of the margins used clinically to generate planning target volumes, but may also best be used to monitor trends in clinical practice or audit changes introduced by new equipment, technology or practice. Simulations on existing data showed that a 3 mm rather than a 5 mm action level during off-line, bony anatomy-based portal imaging would have had a minimal benefit for the patients studied in this work.