19 resultados para Free Design
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This paper presents a thorough investigation of the combined allocator design for Networks-on-Chip (NoC). Particularly, we discuss the interlock of the combined NoC allocator, which is caused by the lock mechanism of priority updating between the local and global arbiters. Architectures and implementations of three interlock-free combined allocators are presented in detail. Their cost, critical path, as well as network level performance are demonstrated based on 65-nm standard cell technology.
Resumo:
The attainable steady-state limiting currents and time responses of membrane-covered and membrane-independent gas sensors incorporating different electrode and electrolyte materials have been compared. A new design comprising a membrane-free microelectrode modified with a thin layer of a room temperature ionic liquid is considered. While the use of ionic liquid as electrolyte eliminates the need for a membrane and added supporting electrolyte, the slower diffusion of analyte within the more viscous medium results in slower time responses. Such sensors do, however, have potential application in more extreme operating conditions, such as high temperature and pressure, where traditional solvents would volatise.
Resumo:
Numerical simulations are used to study the electromagnetic scattering from phase agile microstrip reflectarray cells which exploit the voltage controlled dielectric anisotropy property of nematic state liquid crystals (LC). In the computer model two arrays of equal size elements constructed on a 15?m thick tuneable LC layer were designed to operate at centre frequencies of 102 GHz and 130 GHz. Micromachining processes based on the metallization of quartz/silicon wafers and an industry compatible LCD packaging technique were employed to fabricate the grounded periodic structures. The loss and phase of the reflected signals were measured using a quasi-optical test bench with the reflectarray cells inserted at the beam waist of the imaged Gaussian beam, thus eliminating some of the major problems associated with traditional free-space characterisation at these frequencies. By applying a low frequency AC bias voltage of 10 V, a 165o phase shift with a loss 4.5 dB-6.4 dB at 102 GHz and 130o phase shift with a loss variation between 4.3 dB – 7 dB at 130 GHz was obtained. The experimental results are shown to be in close agreement with the computer model.
Resumo:
PURPOSE:
Design and evaluation of a novel laser-based method for micromoulding of microneedle arrays from polymeric materials under ambient conditions. The aim of this study was to optimise polymeric composition and assess the performance of microneedle devices that possess different geometries.
METHODS:
A range of microneedle geometries was engineered into silicone micromoulds, and their physicochemical features were subsequently characterised.
RESULTS:
Microneedles micromoulded from 20% w/w aqueous blends of the mucoadhesive copolymer Gantrez® AN-139 were surprisingly found to possess superior physical strength than those produced from commonly used pharma polymers. Gantrez® AN-139 microneedles, 600 µm and 900 µm in height, penetrated neonatal porcine skin with low application forces (>0.03 N per microneedle). When theophylline was loaded into 600 µm microneedles, 83% of the incorporated drug was delivered across neonatal porcine skin over 24 h. Optical coherence tomography (OCT) showed that drug-free 600 µm Gantrez® AN-139 microneedles punctured the stratum corneum barrier of human skin in vivo and extended approximately 460 µm into the skin. However, the entirety of the microneedle lengths was not inserted.
CONCLUSION:
In this study, we have shown that a novel laser engineering method can be used in micromoulding of polymeric microneedle arrays. We are currently carrying out an extensive OCT-informed study investigating the influence of microneedle array geometry on skin penetration depth, with a view to enhanced transdermal drug delivery from optimised laser-engineered Gantrez® AN-139 microneedles.
Resumo:
Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, PfA-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside the red blood cell. These enzymes are essential for parasite viability and are validated therapeutic targets. We previously reported the x-ray crystal structure of the monomeric PfA-M1 and proposed a mechanism for substrate entry and free amino acid release from the active site. Here, we present the x-ray crystal structure of the hexameric leucine aminopeptidase, PfA-M17, alone and in complex with two inhibitors with antimalarial activity. The six active sites of the PfA-M17 hexamer are arranged in a disc-like fashion so that they are orientated inwards to form a central catalytic cavity; flexible loops that sit at each of the six entrances to the catalytic cavern function to regulate substrate access. In stark contrast to PfA-M1, PfA-M17 has a narrow and hydrophobic primary specificity pocket which accounts for its highly restricted substrate specificity. We also explicate the essential roles for the metal-binding centers in these enzymes (two in PfA-M17 and one in PfA-M1) in both substrate and drug binding. Our detailed understanding of the PfA-M1 and PfA- M17 active sites now permits a rational approach in the development of a unique class of two-target and/or combination antimalarial therapy.
Resumo:
With increasing demands on storage devices in the modern communication environment, the storage area network (SAN) has evolved to provide a direct connection allowing these storage devices to be accessed efficiently. To optimize the performance of a SAN, a three-stage hybrid electronic/optical switching node architecture based on the concept of a MPLS label switching mechanism, aimed at serving as a multi-protocol label switching (MPLS) ingress label edge router (LER) for a SAN-enabled application, has been designed. New shutter-based free-space multi-channel optical switching cores are employed as the core switch fabric to solve the packet contention and switching path conflict problems. The system-level node architecture design constraints are evaluated through self-similar traffic sourced from real gigabit Ethernet network traces and storage systems. The extension performance of a SAN over a proposed WDM ring network, aimed at serving as an MPLS-enabled transport network, is also presented and demonstrated.
Resumo:
Free fatty acid receptor 2 (FFA2; GPR43) is a G protein-coupled seven-transmembrane receptor for short-chain fatty acids (SCFAs) that is implicated in inflammatory and metabolic disorders. The SCFA propionate has close to optimal ligand efficiency for FFA2 and can hence be considered as highly potent given its size. Propionate, however, does not discriminate between FFA2 and the closely related receptor FFA3 (GPR41). To identify FFA2-selective ligands and understand the molecular basis for FFA2 selectivity, a targeted library of small carboxylic acids was examined using holistic, label-free dynamic mass redistribution technology for primary screening and the receptor-proximal G protein [S-35] guanosine 5'-(3-O-thio) triphosphate activation, inositol phosphate, and cAMP accumulation assays for hit confirmation. Structure-activity relationship analysis allowed formulation of a general rule to predict selectivity for small carboxylic acids at the orthosteric binding site where ligands with substituted sp(3)-hybridized alpha-carbons preferentially activate FFA3, whereas ligands with sp(2)- or sp-hybridized alpha-carbons prefer FFA2. The orthosteric binding mode was verified by site-directed mutagenesis: replacement of orthosteric site arginine residues by alanine in FFA2 prevented ligand binding, and molecular modeling predicted the detailed mode of binding. Based on this, selective mutation of three residues to their non-conserved counterparts in FFA3 was sufficient to transfer FFA3 selectivity to FFA2. Thus, selective activation of FFA2 via the orthosteric site is achievable with rather small ligands, a finding with significant implications for the rational design of therapeutic compounds selectively targeting the SCFA receptors.
Resumo:
Dual-rail encoding, return-to-spacer protocol, and hazard-free logic can be used to resist power analysis attacks by making energy consumed per clock cycle independent of processed data. Standard dual-rail logic uses a protocol with a single spacer, e.g., all-zeros, which gives rise to energy balancing problems. We address these problems by incorporating two spacers; the spacers alternate between adjacent clock cycles. This guarantees that all gates switch in every clock cycle regardless of the transmitted data values. To generate these dual-rail circuits, an automated tool has been developed. It is capable of converting synchronous netlists into dual-rail circuits and it is interfaced to industry CAD tools. Dual-rail and single-rail benchmarks based upon the advanced encryption standard (AES) have been simulated and compared in order to evaluate the method and the tool.
Resumo:
In this paper we investigate the azimuthal pattern symmetry of an Archimedean spiral antenna which is designed to operate over the frequency range 3-10 GHz. The performance of the spiral in free space is compared with a structure that is backed by a perfect electric conductor with a separation distance of ?/4 at the operating frequencies. The latter arrangement exhibits a higher gain, however it is observed that the radiation patterns are less symmetrical about boresight and this performance degradation increases with frequency. The predicted 3 dB beamwidth difference is shown to vary between 14° (3 GHz) and 51° (10 GHz). An improved antenna design is described which reduces the pattern asymmetry to ˜ 2° at 10 GHz. The reduction in modal contamination is obtained by inserting slots carefully arranged in a radial pattern to disrupt the surface currents that flow on the ground plane of the antenna
Resumo:
The aluminum complex Alq(3) (q = 8-hydroxyquinolinate), which has important applications in organic light-emitting diode materials, is shown to be readily synthesized as a pure phase under solvent-free mechanochemical conditions from Al(OAc)(2)OH and 8-hydroxyquinoline by ball milling. The initial product of the mechanochemical synthesis is a novel acetic acid solvate of Alq(3), and the alpha polymorph of Alq(3) is obtained on subsequent heating/desolvation of this phase. The structure of the mechanochemically prepared acetic acid solvate of Alq(3) has been determined directly from powder X-ray diffraction data and is shown to be a different polymorph from the corresponding acetic acid solvate prepared by solution-state crystallization of Alq(3) from acetic acid. Significantly, the mechanochemical synthesis of Alq(3) is shown to be fully scalable across two orders of magnitude from 0.5 to 50 g scale. The Alq(3) sample obtained from the solvent-free mechanochemical synthesis is analytically pure and exhibits identical photoluminescence behavior to that of a sample prepared by the conventional synthetic route.
Resumo:
In this article I investigate the practice of free music improvisation in Brazil. The reflections and findings presented here are derived from research conducted as part of a four months Higher Education Academy (HEA, UK) Fellowship, carried out between February and June 2014. The aim was to enquire whether or how the practice of free improvisation is taught in the Brazilian higher education system.
As part of this ethnographic study visits to the following universities were scheduled:
The Federal University of Rio de Janeiro - UFRJ
The Universidade Federal do Estado do Rio de Janeiro (UNIRIO)
The University of São Paulo - USP
The Federal University of Minas Gerais – UFMG
The Federal University of Bahia – UFBA.
The Federal University of Rio Grande do Norte in Natal (UFRN) and
The ELM, the Escola Livre de Música in Unicamp.
I discuss here some general background thinking to the research process, specifically recalling the work of French composer and educator Alain Savouret. I proceed to examine the improvisational spirit, the improvisatory worldmaking approach (the ‘jeitinho brasileiro’) that is often considered to be integral to the Brazilian way of life. In the final part of the article I discuss applied ethnographic methodologies, including the design of questions that were used for over 50 video interviews with Brazilian musicians during the research. I conclude with a final reflection on the video interviews with a specific focus on whether free improvisation can be taught, and the importance of listening in the context of free improvisation practices.
Resumo:
The crucial roles of the coverage of surface free sites in determining catalytic activity trend are quantitatively addressed with the help of density functional theory and microkinetics. First, by analyzing activity trends of NO oxidation catalyzed by Ru, Rh, Pd, Os, Ir, and Pt surfaces with full kinetic considerations, we identify that the activity trend is in general determined by the competition between the reaction barrier and the coverage of surface free sites. Second, since the dissociation of many important molecules, such as the dissociation of N(2), O(2), and CO, follows the same Bronsted-Evans-Polanyi relationship, the coverage of surface free sites is usually a decisive term that affects the overall activity. Third, an equation is derived for the coverage of surface free sites and it is found that the coverage of surface free sites contains not only all the key thermodynamic parameters but also all the kinetic properties in the catalytic system. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3140202]
Resumo:
Purpose: To study the effect of free glasses combined with teacher incentives on in-school glasses wear among Chinese urban migrant children. Design: Cluster-randomized controlled trial. Methods: Children with VA <= 6/12 in either eye due to refractive error in 94 randomly-chosen primary schools underwent randomization by school to receive free glasses, education on their use and a teacher incentive (Intervention), or glasses prescriptions only (Control). Intervention group teachers received a tablet computer if >= 80% of children given glasses wore them during un-announced visits 6 weeks and 6 months (main outcome) after intervention. Results: Among 4376 children, 728 (16.7%, mean age 10.9 years, 51.0% boys) met enrollment criteria and were randomly allocated, 358 (49.2%, 47 schools) to Intervention and 370 (50.8%, 47 schools) to Control. Among these, 693 children (95.2%) completed the study and underwent analysis. Spectacle wear was significantly higher at 6 months among Intervention children (Observed [main outcome]: 68.3% versus 23.9%, Adjusted Odds Ratio [OR]=11.5, 95% Confidence Interval [CI] 5.91-22.5, P<0.001; Self-reported: 90.6% versus 32.1%, OR = 43.7, 95% CI = 21.7-88.5, P < 0.001). Other predictors of observed wear at 6 months included baseline spectacle wear (P<0.001), uncorrected VA<6/18 (P=0.01) and parental spectacle wear (P=0.02). The 6-month observed wear rate was only 41% among similar-aged children provided free glasses in our previous trial without teacher incentives. Conclusions: Free spectacles and teacher incentives maintain classroom wear in the large majority of children needing glasses over a school year. Low wear among Control children demonstrates the need for interventions.
Resumo:
The development of a virtual testing environment, as a cost-effective industrial design tool in the design and analysis of composite structures, requires the need to create models efficiently, as well as accelerate the analysis by reducing the number of degrees of freedom, while still satisfying the need for accurately tracking the evolution of a debond, delamination or crack front. The eventual aim is to simulate both damage initiation and propagation in components with realistic geometrical features, where crack propagation paths are not trivial. Meshless approaches, and the Element-Free Galerkin (EFG) method, are particularly suitable for problems involving changes in topology and have been successfully applied to simulate damage in homogeneous materials and concrete. In this work, the method is utilized to model initiation and mixed-mode propagation of cracks in composite laminates, and to simulate experimentally-observed crack migration which is difficult to model using standard finite element analysis. N