22 resultados para Fourier Spectral Method
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Context. The 30 Doradus (30 Dor) region of the Large Magellanic Cloud, also known as the Tarantula nebula, is the nearest starburst region. It contains the richest population of massive stars in the Local Group, and it is thus the best possible laboratory to investigate open questions on the formation and evolution of massive stars. Aims. Using ground-based multi-object optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to establish the (projected) rotational velocity distribution for a sample of 216 presumably single O-type stars in 30 Dor. The sample is large enough to obtain statistically significant information and to search for variations among subpopulations - in terms of spectral type, luminosity class, and spatial location - in the field of view. Methods. We measured projected rotational velocities, 3e sin i, by means of a Fourier transform method and a profile fitting method applied to a set of isolated spectral lines. We also used an iterative deconvolution procedure to infer the probability density, P(3e), of the equatorial rotational velocity, 3e. Results. The distribution of 3e sin i shows a two-component structure: a peak around 80 km s1 and a high-velocity tail extending up to 600 km s-1 This structure is also present in the inferred distribution P(3e) with around 80% of the sample having 0 <3e ≤ 300 km s-1 and the other 20% distributed in the high-velocity region. The presence of the low-velocity peak is consistent with what has been found in other studies for late O- and early B-type stars. Conclusions. Most of the stars in our sample rotate with a rate less than 20% of their break-up velocity. For the bulk of the sample, mass loss in a stellar wind and/or envelope expansion is not efficient enough to significantly spin down these stars within the first few Myr of evolution. If massive-star formation results in stars rotating at birth with a large portion of their break-up velocities, an alternative braking mechanism, possibly magnetic fields, is thus required to explain the present-day rotational properties of the O-type stars in 30 Dor. The presence of a sizeable population of fast rotators is compatible with recent population synthesis computations that investigate the influence of binary evolution on the rotation rate of massive stars. Even though we have excluded stars that show significant radial velocity variations, our sample may have remained contaminated by post-interaction binary products. That the highvelocity tail may be populated primarily (and perhaps exclusively) by post-binary interaction products has important implications for the evolutionary origin of systems that produce gamma-ray bursts. © 2013 Author(s).
Resumo:
Results of the search of the periodic changes of the 530.3 nm line intensity emitted by selected structures of the solar corona in the frequency range 1-10 Hz are presented. A set of 12 728 images of the section of the solar corona extending from near the north pole to the south-west were taken simultaneously in the 530.3 nm ("green") line and white-light with the Solar Eclipse Coronal Imaging System (SECIS) during the 143-seconds- long totality of the 1999 August 11 solar eclipse observed in Shabla, Bulgaria. The time resolution of the collected data is better than 0.05 s and the pixel size is approximately 4 arcsec. Using classical Fourier spectral analysis tools, we investigated temporal changes of the local 530.3 nm coronal line brightness in the frequency range 1-10 Hz of thousands of points within the field of view. The various photometric and instrumental effects have been extensively considered. We did not find any indisputable, statistically significant evidence of periodicities in any of the investigated points (at significance level alpha = 0.05).
Resumo:
Proxy records derived from ombrotrophic peatlands provide important insights into climate change over decadal to millennial timescales. We present mid- to late- Holocene humification data and testate amoebae-derived water table records from two peatlands in Northern Ireland. We examine the repli- cation of periodicities in these proxy climate records, which have been precisely linked through teph- rochronology. Age-depth models are constructed using a Bayesian piece-wise linear accumulation model and chronological errors are calculated for each profile. A Lomb-Scargle Fourier transform-based spectral analysis is used to test for statistically significant periodicities in the data. Periodicities of c. 130, 180, 260, 540 and 1160 years are present in at least one proxy record at each site. The replication of these peri- odicities provides persuasive evidence that they are a product of allogenic climate controls, rather than internal peatland dynamics. A technique to estimate the possible level of red-noise in the data is applied and demonstrates that the observed periodicities cannot be explained by a first-order autoregressive model. We review the periodicities in the light of those reported previously from other marine and terrestrial climate proxy archives to consider climate forcing parameters. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
InP(1 0 0) surfaces were sputtered under ultrahigh vacuum conditions by 5 keV N2+ ions at an angle of incidence of 41° to the sample normal. The fluence, φ, used in this study, varied from 1 × 1014 to 5 × 1018 N2+ cm-2. The surface topography was investigated using field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). At the lower fluences (φ ≤ 5 × 1016 N2+ cm-2) only conelike features appeared, similar in shape as was found for noble gas ion bombardment of InP. At the higher fluences, ripples also appeared on the surface. The bombardment-induced topography was quantified using the rms roughness. This parameter showed a linear relationship with the logarithm of the fluence. A model is presented to explain this relationship. The ripple wavelength was also determined using a Fourier transform method. These measurements as a function of fluence do not agree with the predictions of the Bradley-Harper theory. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Cryptographic algorithms have been designed to be computationally secure, however it has been shown that when they are implemented in hardware, that these devices leak side channel information that can be used to mount an attack that recovers the secret encryption key. In this paper an overlapping window power spectral density (PSD) side channel attack, targeting an FPGA device running the Advanced Encryption Standard is proposed. This improves upon previous research into PSD attacks by reducing the amount of pre-processing (effort) required. It is shown that the proposed overlapping window method requires less processing effort than that of using a sliding window approach, whilst overcoming the issues of sampling boundaries. The method is shown to be effective for both aligned and misaligned data sets and is therefore recommended as an improved approach in comparison with existing time domain based correlation attacks.
Resumo:
In recent years, geophysical methods have been shown to be sensitive to microbial-induced mineralization processes. The spectral induced-polarization (SIP) method appears to be very promising for monitoring mineralization and microbial processes. With this work, we study the links of mineralization and SIP signals, in the absence of microbial activity. We recorded the SIP response during abiotic FeS precipitation. We show that the SIP signals are diagnostic of FeS mineralization and can be differentiated from SIP signals from biomineralization processes. More specifically, the imaginary conductivity shows almost linear dependence on the amount of FeS precipitating out of solution, above the threshold value 0.006 gr under our experimental conditions. This research has direct implications for the use of the SIP method as a monitoring and decision-making tool for sustainable remediation of metals in contaminated soils and groundwater.
Resumo:
An algorithm is presented which generates pairs of oscillatory random time series which have identical periodograms but differ in the number of oscillations. This result indicates the intrinsic limitations of spectral methods when it comes to the task of measuring frequencies. Other examples, one from medicine and one from bifurcation theory, are given, which also exhibit these limitations of spectral methods. For two methods of spectral estimation it is verified that the particular way end points are treated, which is specific to each method, is, for long enough time series, not relevant for the main result.
Resumo:
A time-dependent method for calculating the collective excitation frequencies and densities of a trapped, inhomogeneous Bose-Einstein condensate with circulation is presented. The results are compared with time-independent solutions of the Bogoliubov-de Gennes equations. The method is based on time-dependent linear-response theory combined with spectral analysis of moments of the excitation modes of interest. The technique is straightforward to apply, extremely efficient in our implementation with parallel fast Fourier transform methods, and produces highly accurate results. For high dimensionality or low symmetry the time-dependent approach is a more practical computational scheme and produces accurate and reliable data. The method is suitable for general trap geometries, condensate flows and condensates permeated with defects and vortex structures.
Resumo:
We have undertaken a 330-360 GHz molecular line survey of the halo gas surrounding the hot core associated with G34.26+0.15. In contrast to our molecular line survey of the hot core itself, where 338 lines from at least 38 species were detected, only 18 lines from 9 species were detected in the halo. The lines are mainly single transitions of simple di atomic and triatomic molecules. Lower limits to their column densities have been evaluated by an LTE method. In the case of methanol, where four transitions were detected, the rotation temperature and column density have been evaluated by the rotation diagram technique. We have modified the previous depth-dependent chemical model developed in Paper II to calculate the column densities observed along a general line of sight drawn through the model cloud. The model is also extended to produce beam-averaged column densities for better comparison with those observed. We compare the model column densities with those observed and make recommendations for future depth-dependent chemical modelling of hot cores.
Resumo:
Purpose
This study was designed to investigate methods to help patients suffering from unilateral tinnitus synthesizing an auditory replica of their tinnitus.
Materials and methods
Two semi-automatic methods (A and B) derived from the auditory threshold of the patient and a method (C) combining a pure tone and a narrow band-pass noise centred on an adjustable frequency were devised and rated on their likeness over two test sessions. A third test evaluated the stability over time of the synthesized tinnitus replica built with method C, and its proneness to merge with the patient's tinnitus. Patients were then asked to try and control the lateralisation of this single percept through the adjustment of the tinnitus replica level.
Results
The first two tests showed that seven out of ten patients chose the tinnitus replica built with method C as their preferred one. The third test, performed on twelve patients, revealed pitch tuning was rather stable over a week interval. It showed that eight patients were able to consistently match the central frequency of the synthesized tinnitus (presented to the contralateral ear) to their own tinnitus, which leaded to a unique tinnitus percept. The lateralisation displacement was consistent across patients and revealed an average range of 29dB to obtain a full lateral shift from the ipsilateral to the contralateral side.
Conclusions
Although spectrally simpler than the semi-automatic methods, method C could replicate patients' tinnitus, to some extent. When a unique percept between synthesized tinnitus and patients' tinnitus arose, lateralisation of this percept was achieved.
Resumo:
Laser-driven proton and ion acceleration is an area of increasing research interest given the recent development of short pulse-high intensity lasers. Several groups have reported experiments to understand whether a laser-driven beam can be applied for radiobiological purposes and in each of these, the method to obtain dose and spectral analysis was slightly different. The difficulty with these studies is that the very large instantaneous dose rate is a challenge for commonly used dosimetry techniques, so that other more sophisticated procedures need to be explored. This paper aims to explain a method for obtaining the energetic spectrum and the dose of a laser-driven proton beam irradiating a cell dish used for radiobiology studies. The procedure includes the use of a magnet to have charge and energy separation of the laser-driven beam, Gafchromic films to have information on dose and partially on energy, and a Monte Carlo code to expand the measured data in order to obtain specific details of the proton spectrum on the cells. Two specific correction factors have to be calculated: one to take into account the variation of the dose response of the films as a function of the proton energy and the other to obtain the dose to the cell layer starting from the dose measured on the films. This method, particularly suited to irradiation delivered in a single laser shot, can be applied in any other radiobiological experiment performed with laser-driven proton beams, with the only condition that the initial proton spectrum has to be at least roughly known. The method was tested in an experiment conducted at Queen's University of Belfast using the TARANIS laser, where the mean energy of the protons crossing the cells was between 0.9 and 5 MeV, the instantaneous dose rate was estimated to be close to 10(9) Gy s(-1) and doses between 0.8 and 5 Gy were delivered to the cells in a single laser shot. The combination of the applied corrections modified the initial estimate of dose by up to 40%.
Resumo:
Laser plasma interferograms are currently analyzed by extraction of the phase-shift map with fast Fourier transform (FFT) techniques [Appl. Opt. 18, 3101 (1985)]. This methodology works well when interferograms are only marginally affected by noise and reduction of fringe visibility, but it can fail to produce accurate phase-shift maps when low-quality images are dealt with. We present a novel procedure for a phase-shift map computation that makes extensive use of the ridge extraction in the continuous wavelet transform (CWT) framework. The CWT tool is flexible because of the wide adaptability of the analyzing basis, and it can be accurate because of the intrinsic noise reduction in the ridge extraction. A comparative analysis of the accuracy performances of them new tool and the FFT-based one shows that the CWT-based tool produces phase maps considerably less noisy and that it can better resolve local inhomogeneties. (C) 2001 Optical Society of America.
Resumo:
omega Ori (HD37490, HR1934) is a Be star known to have presented variations. In order to investigate the nature and origin of its short-term and mid-term variability, a study is performed of several spectral lines (Halpha, Hdelta, HeI 4471, 4713, 4921, 5876, 6678, CII 4267, 6578, 6583, Mg II 4481, Si III 4553 and Si II 6347), based on 249 high signal-to-noise high-resolution spectra taken with 8 telescopes over 22 consecutive nights during the MuSiCoS (Multi SIte COntinuous Spectroscopy) campaign in November-December 1998. The stellar parameters are revisited and the projected rotational velocity (v sin i = 179 km s(-1)) is redetermined using several methods. With the MuSiCoS 98 dataset, a time series analysis of line-profile variations (LPVs) is performed using the Restricted Local Cleanest (RLC) algorithm and a least squares method. The behaviour of the velocity of the centroid of the lines, the equivalent widths and the apparent vsini for several lines, as well as Violet and Red components of photospheric lines affected by emission (red He i lines, Si II 6347, CII 6578, 6583) are analyzed. The non-radial pulsation (NRP) model is examined using phase diagrams and the Fourier-Doppler Imaging (FDI) method. The LPVs are consistent with a NRP mode with l = 2 or 3, \m\ = 2 with frequency 1.03 cd(-1). It is shown that an emission line outburst occurred in the middle of the campaign. Two scenarios are proposed to explain the behaviour of a dense cloud, temporarily orbiting around the star with a frequency 0.46 c d(-1), in relation to the outburst.
Resumo:
A bit level systolic array system is proposed for the Winograd Fourier transform algorithm. The design uses bit-serial arithmetic and, in common with other systolic arrays, features nearest-neighbor interconnections, regularity and high throughput. The short interconnections in this method contrast favorably with the long interconnections between butterflies required in the FFT. The structure is well suited to VLSI implementations. It is demonstrated how long transforms can be implemented with components designed to perform a short length transform. These components build into longer transforms preserving the regularity and structure of the short length transform design.
Resumo:
A bit-level systolic array system is proposed for the Winograd Fourier transform algorithm. The design uses bit-serial arithmetic and, in common with other systolic arrays, features nearest neighbor interconnections, regularity, and high throughput. The short interconnections in this method contrast favorably with the long interconnections between butterflies required in the FFT. The structure is well suited to VLSI implementations. It is demonstrated how long transforms can be implemented with components designed to perform short-length transforms. These components build into longer transforms, preserving the regularity and structure of the short-length transform design.