15 resultados para FUNCTIONALIZATION

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functionalization of polyoxovanadate clusters using phosphonate and arsonate ligands results in molecular capsules (see structure; green V, purple P, red O, black C). Through the use of extended homologous ligands, these hybrid organic-inorganic capsules can be successively elongated into tubular molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With several gold nanoparticle-based therapies currently undergoing clinical trials, these treatments may soon be in the clinic as novel anticancer agents. Gold nanoparticles are the subject of a wide ranging international research effort with preclinical studies underway for multiple applications including photoablation, diagnostic imaging, radiosensitization and multifunctional drug-delivery vehicles. These applications require an increasingly complex level of surface modification in order to achieve efficacy and limit off-target toxicity. This review will discuss the main obstacles in relation to surface functionalization and the chemical approaches commonly utilized. Finally, we review a range of recent preclinical studies that aim to advance gold nanoparticle treatments toward the clinic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To create a clinically relevant gold nanoparticle (AuNP) treatment, the surface must be functionalized with multiple ligands such as drugs, antifouling agents and targeting moieties. However, attaching several ligands of differing chemistries and lengths, while ensuring they all retain their biological functionality remains a challenge. This review compares the two most widely employed methods of surface co-functionalization, namely mixed monolayers and hetero-bifunctional linkers. While there are numerous in vitro studies successfully utilizing both surface arrangements, there is little consensus regarding their relative merits. Animal and preclinical studies have demonstrated the effectiveness of mixed monolayer functionalization and while some promising in vitro results have been reported for PEG linker capped AuNPs, any potential benefits of the approach are not yet fully understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To create clinically useful gold nanoparticle (AuNP) based cancer therapeutics it is necessary to co-functionalize the AuNP surface with a range of moieties; e.g. Polyethylene Glycol (PEG), peptides and drugs. AuNPs can be functionalized by creating either a mixed monolayer by attaching all the moieties directly to the surface using thiol chemistry, or by binding groups to the surface by means of a bifunctional polyethylene glycol (PEG) linker. The linker methodology has the potential to enhance bioavailability and the amount of functional agent that can be attached. While there is a large body of published work using both surface arrangements independently, the impact of attachment methodology on stability, non-specific protein adsorption and cellular uptake is not well understood, with no published studies directly comparing the two most frequently employed approaches. This paper compares the two methodologies by synthesizing and characterizing PEG and Receptor Mediated Endocytosis (RME) peptide co-functionalized AuNPs prepared using both the mixed monolayer and linker approaches. Successful attachment of both PEG and RME peptide using the two methods was confirmed using Dynamic Light Scattering, Fourier Transform Infrared Spectroscopy and gel electrophoresis. It was observed that while the 'as synthesized' citrate capped AuNPs agglomerated under physiological salt conditions, all the mixed monolayer and PEG linker capped samples remained stable at 1M NaCl, and were stable in PBS over extended periods. While it was noted that both functionalization methods inhibited non-specific protein attachment, the mixed monolayer samples did show some changes in gel electrophoresis migration profile after incubation with fetal calf serum. PEG renders the AuNP stable in-vivo however, studies with MDA-MB-231 and MCF 10A cell lines indicated that functionalization with PEG, blocks cellular uptake. It was observed that co-functionalization with RME peptide using both the mixed monolayer and PEG linker methods greatly enhanced cellular internalization compared to PEG capped AuNPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum–classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of roughening and functionalization processes involved in modifying the wettability of poly(e-caprolactone) (PCL) after treatment by an atmospheric pressure glow discharge plasma is discussed. The change in the ratio of Cdouble bond; length as m-dashO/C–O bonds is a significant factor influencing the wettability of PCL. As the contact angle decreases, the level of Cdouble bond; length as m-dashO bonds tends to rise. Surface roughness alterations are the driving force for lasting increases in wettability, while the surface functional species are shorter lived. We can approximate from ageing that the increase in wettability for PCL after plasma treatment is 55–60% due to roughening and 40–45% due to surface functionalization for the plasma device investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functionalization of alkanes is much sought after for the production of fine and bulk chemicals. In particular, the oxidative activation of alkanes and their conversion to ethene and propene has been studied extensively, owing to the use of these alkenes in polymerization reactions. The greater reactivity of the products in comparison with the reactants has proven a major issue in this reaction as this can result in overoxidation, producing CO and CO2 and, therefore, reducing the alkene yield. Herein, the first application of supported gold catalysts for the direct activation of C2+ aliphatic alkanes with oxygen to form alkenes is demonstrated. This catalyst is particularly notable as it is highly active, selective to propene and ethene, and stable on stream over a 48 h period. Maintaining cationic gold is thought to be critical for the stability and this catalyst design provides the possibility of applying gold-based catalysts over a much wider temperature range than has been reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The zero-length crosslinker EDC has been widely used to make amide bonds between carboxylic acid and amine groups for bioconjugation because no residues remain in the crosslinked protein. During the conjugation process, EDC activates the carboxyl groups (negatively charged) and forms an unstable amine-reactive intermediate (positively charged). However, the process turns to be a problematic issue if it is applied to modify carboxyl-functionalized and –stabilized Au nanoparticles (AuNPs) due to the fact that the negatively repulsive forces which help to stabilize the AuNPs were disrupted leading to the colloid aggregation. Therefore, to modify the negatively carboxyl-terminated AuNPs while their stability can be maintained yet, we assume that functionalization of the AuNPs using 02 kinds of negatively charged groups which one serves as a linking agent, and the other one plays a role of negative charge maintainer could overcome the impediment.

In this study, the colloidal gold nanoparticles were synthesized by Turkevitch’s method, and then their surface was rationally functionalized with different molar ratios of HS(CH2)11(OCH2CH2)6OCH2COOH and HS(CH2)11(OCH2CH2)3OH (OEG6-COOH/OEG3-OH) by self assembling technique. As a result, the most appropriate molar ratio was found to be 1:10, and the AuNP aggregation was prevented not only in the activation process by EDC but also in the present of high concentration of NaCl as well as over in a wide pH range. This is the first time that extremely stable OEG derivatives-functionalized Au nanoparticles for protein bioconjugation using EDC chemistry is reported, and the results open the door for covalent bioconjugation of AuNPs in biological applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon composite monoliths were prepared from a commercial phenolic resin mixed with just 1 wt% of carbon nanotubes (CNTs) followed by carbonization and physical activation with CO. The products possess a hierarchical macroporous-microporous structure and superior CO adsorption properties. In particular, they show the top-ranked CO capacity (52 mg CO per g adsorbent at 25 °C and 114 mmHg) under low CO partial pressures, which is of more relevance for flue gas applications. This matches or exceeds those of carbons produced by complex chemical activation and functionalization. Our study demonstrates an effective way to create narrow micropores through structural modification of carbon composites by CNTs. © 2013 The Royal Society of Chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two mechanisms of conduction were identified from temperature dependent (120 K-340 K) DC electrical resistivity measurements of composites of poly(c-caprolactone) (PCL) and multi-walled carbon nanotubes (MWCNTs). Activation of variable range hopping (VRH) occurred at lower temperatures than that for temperature fluctuation induced tunneling (TFIT). Experimental data was in good agreement with the VRH model in contrast to the TFIT model, where broadening of tunnel junctions and increasing electrical resistivity at T > T-g is a consequence of a large difference in the coefficients of thermal expansion of PCL and MWCNTs. A numerical model was developed to explain this behavior accounting for a thermal expansion effect by supposing the large increase in electrical resistivity corresponds to the larger relative deformation due to thermal expansion associated with disintegration of the conductive MWCNT network. MWCNTs had a significant nucleating effect on PCL resulting in increased PCL crystallinity and an electrically insulating layer between MWCNTs. The onset of rheological percolation at similar to 0.18 vol% MWCNTs was clearly evident as storage modulus, G' and complex viscosity, vertical bar eta*vertical bar increased by several orders of magnitude. From Cole-Cole and Van Gurp-Palmen plots, and extraction of crossover points (G(c)) from overlaying plots of G' and G '' as a function of frequency, the onset of rheological percolation at 0.18 vol% MWCNTs was confirmed, a similar MWCNT loading to that determined for electrical percolation. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface patterning in three dimensions is of great importance in biomaterials design for controlling cell behavior. A facile one-step functionalization of biodegradable PDLLA fibers using amphiphilic diblock copolymers is demonstrated here to systematically vary the fiber surface composition. The copolymers comprise a hydrophilic poly[oligo(ethylene glycol) methacrylate] (POEGMA), poly[(2-methacryloyloxy)ethyl phosphorylcholine] (PMPC), or poly[2-(dimethylamino)ethyl methacrylate)] (PDMAEMA) block and a hydrophobic poly(l-lactide) (PLA) block. The block copolymer-modified fibers have increased surface hydrophilicity compared to that of PDLLA fibers. Mixtures of PLAPMPC and PLAPOEGMA copolymers are utilized to exploit microphase separation of the incompatible hydrophilic PMPC and POEGMA blocks at the fiber surface. Conjugation of an RGD cell-adhesive peptide to one hydrophilic block (POEGMA) using thiol-ene chemistry produces fibers with domains of cell-adhesive (POEGMA) and cell-inert (PMPC) sites, mimicking the adhesive properties of the extracellular matrix (ECM). Human mesenchymal progenitor cells (hES-MPs) showed much better adhesion to the fibers with surface-adhesive heterogeneity compared to that to fibers with only adhesive or only inert surface chemistries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis of polymersome-forming block copolymers using two different synthetic routes based on Atom Transfer Radical Polymerization (ATRP) and Reversible Addition Fragmentation chain Transfer (RAFT) polymerization, respectively. Functionalization with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) allowed the block copolymer chains to be labelled with electron-dense metal ions (e.g. indium). The resulting metal-conjugated copolymers can be visualized by transmission electron microscopy with single chain resolution, hence enabling the study of polymer/polymer immiscibility and phase separation on the nano-scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoresponsive oligonucleotides (ONs) incorporating isoxazole-linked azobenzene (AB) moieties were prepared by resin-supported nitrile oxide-alkyne cycloaddition (NOAC) chemistry. The thermal and photochromic properties of the modified ONs were significantly influenced by the extent of pi-conjugation between the isoxazole and the AB modules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MCF, NbMCF and TaMCF Mesostructured Cellular Foams were used as supports for platinum and silver (1 wt%). Metallic and bimetallic catalysts were prepared by grafting of metal species on APTMS (3-aminopropyltrimethoxysilane) and MPTMS (2-mercaptopropyltrimethoxysilane) functionalized supports. Characterizations by X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF) spectroscopy, and in situ Fourier Transform Infrared (FTIR) spectroscopy allowed to monitor the oxidation state of metals and surface properties of the catalysts, in particular the formation of bimetallic phases and the strong metal–support interactions. It was evidenced that the functionalization agent (APTMS or MPTMS) influenced the metals dispersion, the type of bimetallic species and Nb/Ta interaction with Pt/Ag. Strong Nb–Ag interaction led to the reduction of niobium in the support and oxidation of silver. MPTMS interacted at first with Pt to form Pt–Ag ensembles highly active in CH3OH oxidation. The effect of Pt particle size and platinum–silver interaction on methanol oxidation was also considered. The nature of the functionalization agent strongly influenced the species formed on the surface during reaction with methanol and determined the catalytic activity and selectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the magnetic properties of graphenic nanostructures is instrumental in future spintronics applications. These magnetic properties are known to depend crucially on the presence of defects. Here we review our recent theoretical studies using density functional calculations on two types of defects in carbon nanostructures: Substitutional doping with transition metals, and sp$^3$-type defects created by covalent functionalization with organic and inorganic molecules. We focus on such defects because they can be used to create and control magnetism in graphene-based materials. Our main results are summarized as follows: i)Substitutional metal impurities are fully understood using a model based on the hybridization between the $d$ states of the metal atom and the defect levels associated with an unreconstructed D$_{3h}$ carbon vacancy. We identify three different regimes, associated with the occupation of distinct hybridization levels, which determine the magnetic properties obtained with this type of doping; ii) A spin moment of 1.0 $\mu_B$ is always induced by chemical functionalization when a molecule chemisorbs on a graphene layer via a single C-C (or other weakly polar) covalent bond. The magnetic coupling between adsorbates shows a key dependence on the sublattice adsorption site. This effect is similar to that of H adsorption, however, with universal character; iii) The spin moment of substitutional metal impurities can be controlled using strain. In particular, we show that although Ni substitutionals are non-magnetic in flat and unstrained graphene, the magnetism of these defects can be activated by applying either uniaxial strain or curvature to the graphene layer. All these results provide key information about formation and control of defect-induced magnetism in graphene and related materials.