19 resultados para Electric load forecasting

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial neural networks (ANNs) can be easily applied to short-term load forecasting (STLF) models for electric power distribution applications. However, they are not typically used in medium and long term load forecasting (MLTLF) electric power models because of the difficulties associated with collecting and processing the necessary data. Virtual instrument (VI) techniques can be applied to electric power load forecasting but this is rarely reported in the literature. In this paper, we investigate the modelling and design of a VI for short, medium and long term load forecasting using ANNs. Three ANN models were built for STLF of electric power. These networks were trained using historical load data and also considering weather data which is known to have a significant affect of the use of electric power (such as wind speed, precipitation, atmospheric pressure, temperature and humidity). In order to do this a V-shape temperature processing model is proposed. With regards MLTLF, a model was developed using radial basis function neural networks (RBFNN). Results indicate that the forecasting model based on the RBFNN has a high accuracy and stability. Finally, a virtual load forecaster which integrates the VI and the RBFNN is presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Traditional internal combustion engine vehicles are a major contributor to global greenhouse gas emissions and other air pollutants, such as particulate matter and nitrogen oxides. If the tail pipe point emissions could be managed centrally without reducing the commercial and personal user functionalities, then one of the most attractive solutions for achieving a significant reduction of emissions in the transport sector would be the mass deployment of electric vehicles. Though electric vehicle sales are still hindered by battery performance, cost and a few other technological bottlenecks, focused commercialisation and support from government policies are encouraging large scale electric vehicle adoptions. The mass proliferation of plug-in electric vehicles is likely to bring a significant additional electric load onto the grid creating a highly complex operational problem for power system operators. Electric vehicle batteries also have the ability to act as energy storage points on the distribution system. This double charge and storage impact of many uncontrollable small kW loads, as consumers will want maximum flexibility, on a distribution system which was originally not designed for such operations has the potential to be detrimental to grid balancing. Intelligent scheduling methods if established correctly could smoothly integrate electric vehicles onto the grid. Intelligent scheduling methods will help to avoid cycling of large combustion plants, using expensive fossil fuel peaking plant, match renewable generation to electric vehicle charging and not overload the distribution system causing a reduction in power quality. In this paper, a state-of-the-art review of scheduling methods to integrate plug-in electric vehicles are reviewed, examined and categorised based on their computational techniques. Thus, in addition to various existing approaches covering analytical scheduling, conventional optimisation methods (e.g. linear, non-linear mixed integer programming and dynamic programming), and game theory, meta-heuristic algorithms including genetic algorithm and particle swarm optimisation, are all comprehensively surveyed, offering a systematic reference for grid scheduling considering intelligent electric vehicle integration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the problems in experimentally obtaining hydrodynamic loads on an oscillating wave surge converter during slamming events, with the aim of furthering understanding of full scale hydrodynamic loads that flap type devices must be designed to withstand. Including how hydro-elastic effects and structural response are linked and why they are essential to the measurement of impulsive hydrodynamic loads. A combined experimental and numerical structural response study carried out on a 40th scale Oyster model drew conclusions on the structural vibration observed in the strain gauge load cell measurement. A further structural response study on a piezo electric load measurement device gave an insight into the advantages it could bring to reducing hydro-elastic effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The advantages of high energy efficiency and economic benefit promote the wide application of combined heat and power system (CHP) based microgrid. Firstly, a mathematical model of the CHP based microgrid is developed. Then, a cost function for the coordination of heat and electric load is proposed. Finally, an optimal dispatch model is developed to achieve the economical and coordinated operation of the CHP based microgrid system. Simulation results verify effectiveness of the proposed dispatch model, which is a powerful tool for the energy management of CHP based microgrid with renewable energy resources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are many uncertainties in forecasting the charging and discharging capacity required by electric vehicles (EVs) often as a consequence of stochastic usage and intermittent travel. In terms of large-scale EV integration in future power networks this paper develops a capacity forecasting model which considers eight particular uncertainties in three categories. Using the model, a typical application of EVs to load levelling is presented and exemplified using a UK 2020 case study. The results presented in this paper demonstrate that the proposed model is accurate for charge and discharge prediction and a feasible basis for steady-state analysis required for large-scale EV integration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The international introduction of electric vehicles (EVs) will see a change in private passenger car usage, operation and management. There are many stakeholders, but currently it appears that the automotive industry is focused on EV manufacture, governments and policy makers have highlighted the potential environmental and job creation opportunities while the electricity sector is preparing for an additional electrical load on the grid system. If the deployment of EVs is to be successful the introduction of international EV standards, universal charging hardware infrastructure, associated universal peripherals and user-friendly software on public and private property is necessary. The focus of this paper is to establish the state-of-the-art in EV charging infrastructure, which includes a review of existing and proposed international standards, best practice and guidelines under consideration or recommendation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric vehicles (EV) do not emit tailpipe exhaust fumes in the same manner as internal combustion engine vehicles. Optimal benefits can only be achieved, if EVS are deployed effectively, so that the tailpipe emissions are not substituted by additional emissions in the electricity sector. This paper examines the potential contributions that Plug in Hybrid Electric Vehicles can make in reducing carbon dioxide. The paper presents the results of the generation expansion model for Northern Ireland and the Republic of Ireland built using the dynamic programming based long term generation expansion planning tool called the Wien Automatic System Planning IV tool. The model optimizes power dispatch using hourly electricity demand curves for each year up to 2020, while incorporating generator characteristics and certain operational requirements such as energy not served and loss of load probability while satisfying constraints on environmental emissions, fuel availability and generator operational and maintenance costs. In order to simulate the effect of PHEV, two distinct charging scenarios are applied based on a peak tariff and an off peak tariff. The importance and influence of the charging regime on the amount of energy used and gaseous emissions displaced is determined and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EU Directive 2009/28/EC on Renewable Energy requires each Member State to ensure 10% of transport energy (excluding aviation and marine transport) comes from renewable sources by 2020 (10% RES-T target). In addition to the anticipated growth in biofuels, this target is expected to be met by the increased electrification of transport coupled with a growing contribution from renewable energy to electricity generation. Energy use in transport accounted for nearly half of Ireland’s total final energy demand and about a third of energy-related carbon dioxide emissions in 2007. Energy use in transport has grown by 6.3% per annum on average in the period 1990 – 2007. This high share and fast growth relative to other countries highlights the challenges Ireland faces in meeting ambitious renewable energy targets. The Irish Government has set a specific target for Electric Vehicles (EV) as part of its strategy to deliver the 10% RES-T target. By 2020, 10% of all vehicles in its transport fleet are to be powered by electricity. This paper quantifies the impacts on energy and carbon dioxide emissions of this 10% EV target by 2020. In order to do this an ‘EV Car Stock’ model was developed to analyse the historical and future make-up of the passenger car portion of the fleet to 2025. Three scenarios for possible take-up in EVs were examined and the associated energy and emissions impacts are quantified. These impacts are then compared to Ireland’s 10% RES-T target and greenhouse gas (GHG) emissions reduction targets for 2020. Two key findings of the study are that the 10% EV target contributes 1.7% to the 10% RES-T target by 2020 and 1.4% to the 20% reduction in Non-ETS emissions by 2020 relative to 2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dwindling fossil fuel resources and pressures to reduce greenhouse gas (GHG) emissions will result in a more diverse range of generation portfolios for future electricity systems. Irrespective of the portfolio mix the overarching requirement for all electricity suppliers and system operators is that supply instantaneously meets demand and that robust operating standards are maintained to ensure a consistent supply of high quality electricity to end-users. Therefore all electricity market participants will ultimately need to use a variety of tools to balance the power system. Thus the role of demand side management (DSM) with energy storage will be paramount to integrate future diverse generation portfolios. Electric water heating (EWH) has been studied previously, particularly at the domestic level to provide load control, peak shave and to benefit end-users financially with lower bills, particularly in vertically integrated monopolies. In this paper, a continuous Direct Load Control (DLC) EWH algorithm is applied in a liberalized market environment using actual historical electricity system and market data to examine the potential energy savings, cost reductions and electricity system operational improvements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dwindling fossil fuel resources and pressures to reduce greenhouse gas emissions will result in a more diverse range of generation portfolios for future electricity systems. Irrespective of the portfolio mix the overarching requirement for all electricity suppliers and system operators is to instantaneously meet demand, to operate to standards and reduce greenhouse gas emissions. Therefore all electricity market participants will ultimately need to use a variety of tools to balance the power system. Thus the role of demand side management with energy storage will be paramount to integrate future diverse generation portfolios. Electric water heating has been studied previously, particularly at the domestic level to provide load control, peak shave and to bene?t end-users ?nancially with lower bills, particularly in vertically integrated monopolies. In this paper a number of continuous direct load control demand response based electric water heating algorithms are modelled to test the effectiveness of wholesale electricity market signals to study the system bene?ts. The results are compared and contrasted to determine which control algorithm showed the best potential for energy savings, system marginal price savings and wind integration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental concerns and fossil fuel shortage put pressure on both power and transportation systems. Electric vehicles (EVs) are thought to be a good solution to these problems. With EV adoption, energy flow is two way: from grid to vehicle and from vehicle to grid, which is known as vehicle-to-grid (V2G) today. This paper considers electric power systems and provides a review of the impact of V2G on power system stability. The concept and basics of V2G technology are introduced at first, followed by a description of EV application in the world. Several technical issues are detailed in V2G modeling and capacity forecasting, steady-state analysis and stability analysis. Research trends of such topics are declared at last.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A micro-grid is an autonomous system which can be operated and connected to an external system or isolated with the help of energy storage systems (ESSs). While the daily output of distributed generators (DGs) strongly depends on the temporal distribution of natural resources such as wind and solar, unregulated electric vehicle (EV) charging demand will deteriorate the imbalance between the daily load and generation curves. In this paper, a statistical model is presented to describe daily EV charging/discharging behaviour. An optimisation problem is proposed to obtain economic operation for the micro-grid based on this model. In day-ahead scheduling, with estimated information of power generation and load demand, optimal charging/discharging of EVs during 24 hours is obtained. A series of numerical optimization solutions in different scenarios is achieved by serial quadratic programming. The results show that optimal charging/discharging of EVs, a daily load curve can better track the generation curve and the network loss and required ESS capacity are both decreased. The paper also demonstrates cost benefits for EVs and operators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problems of effective in situ measurement of the real-time strain for bridge weigh in motion in reinforced concrete bridge structures through the use of optical fiber sensor systems. By undertaking a series of tests, coupled with dynamic loading, the performance of fiber Bragg grating-based sensor systems with various amplification techniques were investigated. In recent years, structural health monitoring (SHM) systems have been developed to monitor bridge deterioration, to assess load levels and hence extend bridge life and safety. Conventional SHM systems, based on measuring strain, can be used to improve knowledge of the bridge's capacity to resist loads but generally give no information on the causes of any increase in stresses. Therefore, it is necessary to find accurate sensors capable of capturing peak strains under dynamic load and suitable methods for attaching these strain sensors to existing and new bridge structures. Additionally, it is important to ensure accurate strain transfer between concrete and steel, adhesives layer, and strain sensor. The results show the benefits in the use of optical fiber networks under these circumstances and their ability to deliver data when conventional sensors cannot capture accurate strains and/or peak strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study characterizes the domestic loads suitable to participate in the load participation scheme to make the power system more carbon and economically efficient by shifting the electricity demand profile towards periods when there is plentiful renewable in-feed.

A series of experiments have been performed on a common fridge-freezer, both completely empty and half full. The results presented are ambient temperature, temperature inside the fridge, temperature inside the drawer of the fridge, temperature inside the freezer, thermal time constants, power consumption and electric energy consumed.

The thermal time constants obtained clearly demonstrate the potential of such refrigeration load for Smart Customer Load Participation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric vehicles (EVs) offer great potential to move from fossil fuel dependency in transport once some of the technical barriers related to battery reliability and grid integration are resolved. The European Union has set a target to achieve a 10% reduction in greenhouse gas emissions by 2020 relative to 2005 levels. This target is binding in all the European Union member states. If electric vehicle issues are overcome then the challenge is to use as much renewable energy as possible to achieve this target. In this paper, the impacts of electric vehicle charged in the all-Ireland single wholesale electricity market after the 2020 deadline passes is investigated using a power system dispatch model. For the purpose of this work it is assumed that a 10% electric vehicle target in the Republic of Ireland is not achieved, but instead 8% is reached by 2025 considering the slow market uptake of electric vehicles. Our experimental study shows that the increasing penetration of EVs could contribute to approach the target of the EU and Ireland government on emissions reduction, regardless of different charging scenarios. Furthermore, among various charging scenarios, the off-peak charging is the best approach, contributing 2.07% to the target of 10% reduction of Greenhouse gas emissions by 2025.