39 resultados para Efficient Synthesis
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
3-Allyl substituted five six and seven membered ring lactams, are readily available in good yields and reasonable selectivity by a formal Meerwein Eschenmoser [3,3] rearrangement, using readily available methoxymethyleniminium salts and lithium alkoxides derived from allyl alcohols.
Resumo:
3-Allyl substituted five, six, and seven membered ring lactams are readily available in good yields and reasonable selectivity by a formal Meerwein Eschenmoser Claisen [3,3] rearrangement, using the readily available N,N-dialkylalkoxymethylene iminium salts and lithium alkoxides derived from allyl alcohols.
Resumo:
An efficient synthesis of a precursor to Lilial(R), based on an aldol condensation in an ionic liquid, is described, utilising piperidine as the base catalyst. The yields obtained with this methodology are significantly increased in comparison with those reported in organic solvents to date. In the ionic liquid, the self-aldol condensation of propanal is suppressed and leads to an increased selectivity with respect to the cross-aldol condensation product without the need to use an excess of 4-tert-butylbenzaldehyde to obtain high selectivities.
Resumo:
A simple and efficient synthesis of a novel series of ionic liquids bearing nucleophilic (Me2N) and non-nucleophilic base ((Pr2N)-Pr-i) functionalities is described. The non-nucleophilic base functionality resembles the structure of the Hunig's base (N, N-diisopropylethylamine), which has been used widely in organic synthesis. A qualitative measure of the basicity of these ionic liquids is presented by utilising their interaction with universal indicator. The basicity of these ionic liquids was found to be dependent on the amine tether and choice of linker between the two nitrogen centres. The relative base strength of these ionic liquids was also probed by using them as catalysts in the Heck and Knoevenagel reactions.
Resumo:
The reactions of enantiopure cyclohexene epoxides and trans-1,2-bromoacetates, derived from the corresponding substituted benzene cis-dihydrodiol metabolites, with nitrogen nucleophiles, were examined and possible mechanisms proposed. An initial objective was the synthesis of new 1,2-aminoalcohol enantiomers as potential chiral ligands and synthetic scaffolds for library generation. These apparently simple substitution reactions proved to be more complex than initially anticipated and were found to involve a combination of different reaction mechanisms. Allylic trans-1,2-azidohydrins were prepared by Lewis acid-catalysed ring-opening of cyclic vinyl epoxides with sodium azide via an S(N)2 mechanism. On heating, these trans-1,2-azidohydrins isomerized to the corresponding trans-1,4-azidohydrins via a suprafacial allyl azide [3,3]-sigmatropic rearrangement mechanism. Conversion of a 1,2-azidohydrin to a 1,2-azidoacetate moved the equilibrium position in favour of the 1,4-substitution product. Allylic trans-1,2-bromoacetates reacted with sodium azide at room temperature to give C-2 and C-4 substituted products. A clean inversion of configuration at C-2 was found, as expected, from a concerted S(N)2-pathway. However, substitution at C-4 was not stereoselective and resulted in mixtures of 1,4-cis and 1,4-trans products. This observation can be rationalized in terms of competitive S(N)2 and S(N)2 reactions allied to a [3,3]-sigmatropic rearrangement. cis-1,2-Azidohydrins and cis-1,2-azidoacetates were much more prone to rearrange than the corresponding trans-isomers. Reaction of the softer tosamide nucleophile with trans-1,2-bromoacetates resulted, predominantly, in C-4 substitution via a syn-S(N)2 mechanism. One application of the reaction of secondary amines with allylic cyclohexene epoxides, to give trans-1,2-aminoalcohols, is in the synthesis of the anticholinergic drug vesamicol, via an S(N)2 mechanism. Copyright (c) 2013 John Wiley & Sons, Ltd.
Resumo:
New low-cost ionic liquids containing methyl- and ethyl-sulfate anions can be easily and efficiently prepared under ambient conditions by the reaction of 1-alkylimidazoles with dimethyl sulfate and diethyl sulfate. The preparation and characterization of a series of 1,3-dialkylimidazolium alkyl sulfate and 1,2,3-trialkylimidazolium alkyl sulfate salts are reported. 1,3-Dialkylimidazolium salts containing at least one non-methyl N-alkyl substituent are liquids at, or below room, temperature. Three salts were crystalline at room temperature, the single crystal X-ray structure of 1,3-dimethylimidazolium methyl sulfate was determined and shows the formation of discrete ribbons comprising of two anion-cation hydrogen-bonded chains linked via intra-chain hydrogen-bonding, but little, or no inter-ribbon hydrogen-bonding. The salts are stable, water soluble, inherently 'chloride-free', display an electrochemical window of greater than 4 V, and can be used as alternatives to the corresponding halide salts in metathesis reactions to prepare other ionic liquids including 1-butyl-3-methylimidazolium hexafluorophosphate.
Resumo:
The use of model compounds in the development of selective lignin depolymerisation processes has been limited by the lack of complexity of these models compared with lignin itself. In this paper we report a convergent and efficient synthetic method for the flexible, multi-gram preparation of model lignin hexamers and octamers containing three of the most common connectivity motifs found within native lignin, namely ß-O-4', 5-5' and ß-5', which will be used to further the mechanistic understanding of lignin depolymerisation processes.
Resumo:
The aluminum complex Alq(3) (q = 8-hydroxyquinolinate), which has important applications in organic light-emitting diode materials, is shown to be readily synthesized as a pure phase under solvent-free mechanochemical conditions from Al(OAc)(2)OH and 8-hydroxyquinoline by ball milling. The initial product of the mechanochemical synthesis is a novel acetic acid solvate of Alq(3), and the alpha polymorph of Alq(3) is obtained on subsequent heating/desolvation of this phase. The structure of the mechanochemically prepared acetic acid solvate of Alq(3) has been determined directly from powder X-ray diffraction data and is shown to be a different polymorph from the corresponding acetic acid solvate prepared by solution-state crystallization of Alq(3) from acetic acid. Significantly, the mechanochemical synthesis of Alq(3) is shown to be fully scalable across two orders of magnitude from 0.5 to 50 g scale. The Alq(3) sample obtained from the solvent-free mechanochemical synthesis is analytically pure and exhibits identical photoluminescence behavior to that of a sample prepared by the conventional synthetic route.
Resumo:
The Michaelis-Arbuzov reactions of benzylselenocyanate and 5′-deoxythymidine-5′-selenocyanate with thymidine H-phosphonate proceeded rapidly in the presence of a neutral silylating agent and 2,6-lutidine to give the corresponding Se-alkyl phosphoroselenolate triesters. Deprotection under mild conditions enabled the isolation of phosphoroselenolate diesters which were fully characterised.
Resumo:
The first convergent synthesis of the tricyclic skeleton of huperzine A is described and includes, as the key step, an efficient regioselective intramolecular Heck reaction of 2-(tert-butyldimethylsillyoxymethyl)-6-(2-methoxy-5-bromopyridin-6-yl)methylcyclohex-2-enol.
Resumo:
This paper, chosen as a best paper from the 2004 SAMOS Workshop on Computer Systems: describes a novel, efficient methodology for automatically creating embedded DSP computer systems. The novelty arises since now embedded electronic signal processing systems, such as radar or sonar, can be designed by anyone from the algorithm level, i.e. no low level system design experience is required, whilst still achieving low controllable implementation overheads and high real time performance. In the chosen design example, a bank of Normalised Lattice Filter (NLF) components is created which a four-fold reduction in the required processing resource with no performance decrease.
Resumo:
Lewis acid complexes based on copper(II) and an imidazolium-tagged bis(oxazoline) have been used to catalyse the asymmetric Mukaiyama aldol reaction between methyl pyruvate and 1-methoxy-1-tri-methylsilyloxypropene under homogeneous and heterogeneous conditions. Although the ees obtained in ionic liquid were similar to those found in dichloromethane, there was a significant rate enhancement in the ionic liquid with reactions typically reaching completion within 2 min compared with only 55% conversion after 60 min in dichloromethane. However, this rate enhancement was offset by lower chemoselectivity in ionic liquids due to the formation of 3-hydroxy-1,3-diphenylbutan-1-one as a by-product. Supporting the catalyst on silica or an imidazolium-modified silica using the ionic liquid or in an ionic liquid-diethyl ether system completely suppressed the formation of this by-product without reducing the enantioselectivity. Although the heterogeneous systems were characterised by a drop in catalytic activity the system could be recycled up to five times without any loss in conversion or ee.