15 resultados para Edge Detection
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Molecular logic-based computation continues to throw up new applications in sensing and switching, the newest of which is the edge detection of objects. The scope of this phenomenon is mapped out by the use of structure-activity relationships, where several structures of the molecules and of the objects are examined. The different angles and curvatures of the objects are followed with good-fidelity in the visualized edges, even when the objects are in reverse video.
Resumo:
Severity of left ventricular hypertrophy (LVH) correlates with elevated plasma levels of neuropeptide Y (NPY) in hypertension. NPY elicits positive and negative contractile effects in cardiomyocytes through Y(1) and Y(2) receptors, respectively. This study tested the hypothesis that NPY receptor-mediated contraction is altered during progression of LVH. Ventricular cardiomyocytes were isolated from spontaneously hypertensive rats (SHRs) pre-LVH (12 weeks), during development (16 weeks), and at established LVH (20 weeks) and age-matched normotensive Wistar Kyoto (WKY) rats. Electrically stimulated (60 V, 0.5 Hz) cell shortening was measured using edge detection and receptor expression determined at mRNA and protein level. The NPY and Y(1) receptor-selective agonist, Leu(31)Pro(34)NPY, stimulated increases in contractile amplitude, which were abolished by the Y(1) receptor-selective antagonist, BIBP3226 [R-N(2)-(diphenyl-acetyl)-N-(4-hydroxyphenyl)methyl-argininamide)], confirming Y(1) receptor involvement. Potencies of both agonists were enhanced in SHR cardiomyocytes at 20 weeks (2300- and 380-fold versus controls). Maximal responses were not attenuated. BIBP3226 unmasked a negative contraction effect of NPY, elicited over the concentration range (10(-12) to 3 x 10(-9) M) in which NPY and PYY(3-36) attenuated the positive contraction effects of isoproterenol, the potencies of which were increased in cardiomyocytes from SHRs at 20 weeks (175- and 145-fold versus controls); maximal responses were not altered. Expression of NPY-Y(1) and NPY-Y(2) receptor mRNAs was decreased (55 and 69%) in left ventricular cardiomyocytes from 20-week-old SHRs versus age-matched WKY rats; parallel decreases (32 and 80%) were observed at protein level. Enhancement of NPY potency, producing (opposing) contractile effects on cardiomyocytes together with unchanged maximal response despite reduced receptor number, enables NPY to contribute to regulating cardiac performance during compensatory LVH.
Resumo:
For modern FPGA, implementation of memory intensive processing applications such as high end image and video processing systems necessitates manual design of complex multilevel memory hierarchies incorporating off-chip DDR and onchip BRAM and LUT RAM. In fact, automated synthesis of multi-level memory hierarchies is an open problem facing high level synthesis technologies for FPGA devices. In this paper we describe the first automated solution to this problem.
By exploiting a novel dataflow application modelling dialect, known as Valved Dataflow, we show for the first time how, not only can such architectures be automatically derived, but also that the resulting implementations support real-time processing for current image processing application standards such as H.264. We demonstrate the viability of this approach by reporting the performance and cost of hierarchies automatically generated for Motion Estimation, Matrix Multiplication and Sobel Edge Detection applications on Virtex-5 FPGA.
Resumo:
Realising high performance image and signal processing
applications on modern FPGA presents a challenging implementation problem due to the large data frames streaming through these systems. Specifically, to meet the high bandwidth and data storage demands of these applications, complex hierarchical memory architectures must be manually specified
at the Register Transfer Level (RTL). Automated approaches which convert high-level operation descriptions, for instance in the form of C programs, to an FPGA architecture, are unable to automatically realise such architectures. This paper
presents a solution to this problem. It presents a compiler to automatically derive such memory architectures from a C program. By transforming the input C program to a unique dataflow modelling dialect, known as Valved Dataflow (VDF), a mapping and synthesis approach developed for this dialect can
be exploited to automatically create high performance image and video processing architectures. Memory intensive C kernels for Motion Estimation (CIF Frames at 30 fps), Matrix Multiplication (128x128 @ 500 iter/sec) and Sobel Edge Detection (720p @ 30 fps), which are unrealisable by current state-of-the-art C-based synthesis tools, are automatically derived from a C description of the algorithm.
Resumo:
It is an exciting era for molecular computation because molecular logic gates are being pushed in new directions. The use of sulfur rather than the commonplace nitrogen as the key receptor atom in metal ion sensors is one of these directions; plant cells coming within the jurisdiction of fluorescent molecular thermometers is another, combining photochromism with voltammetry for molecular electronics is yet another. Two-input logic gates benefit from old ideas such as rectifying bilayer electrodes, cyclodextrin-enhanced room-temperature phosphorescence, steric hindrance, the polymerase chain reaction, charge transfer absorption of donor–acceptor complexes and lectin–glycocluster interactions. Furthermore, the concept of photo-uncaging enables rational ways of concatenating logic gates. Computational concepts are also applied to potential cancer theranostics and to the selective monitoring of neurotransmitters in situ. Higher numbers of inputs are also accommodated with the concept of functional integration of gates, where complex input–output patterns are sought out and analysed. Molecular emulation of computational components such as demultiplexers and parity generators/checkers are achieved in related ways. Complexity of another order is tackled with molecular edge detection routines.
Resumo:
Field programmable gate array devices boast abundant resources with which custom accelerator components for signal, image and data processing may be realised; however, realising high performance, low cost accelerators currently demands manual register transfer level design. Software-programmable ’soft’ processors have been proposed as a way to reduce this design burden but they are unable to support performance and cost comparable to custom circuits. This paper proposes a new soft processing approach for FPGA which promises to overcome this barrier. A high performance, fine-grained streaming processor, known as a Streaming Accelerator Element, is proposed which realises accelerators as large scale custom multicore networks. By adopting a streaming execution approach with advanced program control and memory addressing capabilities, typical program inefficiencies can be almost completely eliminated to enable performance and cost which are unprecedented amongst software-programmable solutions. When used to realise accelerators for fast fourier transform, motion estimation, matrix multiplication and sobel edge detection it is shown how the proposed architecture enables real-time performance and with performance and cost comparable with hand-crafted custom circuit accelerators and up to two orders of magnitude beyond existing soft processors.
Resumo:
Realising memory intensive applications such as image and video processing on FPGA requires creation of complex, multi-level memory hierarchies to achieve real-time performance; however commerical High Level Synthesis tools are unable to automatically derive such structures and hence are unable to meet the demanding bandwidth and capacity constraints of these applications. Current approaches to solving this problem can only derive either single-level memory structures or very deep, highly inefficient hierarchies, leading in either case to one or more of high implementation cost and low performance. This paper presents an enhancement to an existing MC-HLS synthesis approach which solves this problem; it exploits and eliminates data duplication at multiple levels levels of the generated hierarchy, leading to a reduction in the number of levels and ultimately higher performance, lower cost implementations. When applied to synthesis of C-based Motion Estimation, Matrix Multiplication and Sobel Edge Detection applications, this enables reductions in Block RAM and Look Up Table (LUT) cost of up to 25%, whilst simultaneously increasing throughput.
Resumo:
Field-programmable gate arrays are ideal hosts to custom accelerators for signal, image, and data processing but de- mand manual register transfer level design if high performance and low cost are desired. High-level synthesis reduces this design burden but requires manual design of complex on-chip and off-chip memory architectures, a major limitation in applications such as video processing. This paper presents an approach to resolve this shortcoming. A constructive process is described that can derive such accelerators, including on- and off-chip memory storage from a C description such that a user-defined throughput constraint is met. By employing a novel statement-oriented approach, dataflow intermediate models are derived and used to support simple ap- proaches for on-/off-chip buffer partitioning, derivation of custom on-chip memory hierarchies and architecture transformation to ensure user-defined throughput constraints are met with minimum cost. When applied to accelerators for full search motion estima- tion, matrix multiplication, Sobel edge detection, and fast Fourier transform, it is shown how real-time performance up to an order of magnitude in advance of existing commercial HLS tools is enabled whilst including all requisite memory infrastructure. Further, op- timizations are presented that reduce the on-chip buffer capacity and physical resource cost by up to 96% and 75%, respectively, whilst maintaining real-time performance.
Resumo:
The relationship between changes in retinal vessel morphology and the onset and progression of diseases such as diabetes, hypertension and retinopathy of prematurity (ROP) has been the subject of several large scale clinical studies. However, the difficulty of quantifying changes in retinal vessels in a sufficiently fast, accurate and repeatable manner has restricted the application of the insights gleaned from these studies to clinical practice. This paper presents a novel algorithm for the efficient detection and measurement of retinal vessels, which is general enough that it can be applied to both low and high resolution fundus photographs and fluorescein angiograms upon the adjustment of only a few intuitive parameters. Firstly, we describe the simple vessel segmentation strategy, formulated in the language of wavelets, that is used for fast vessel detection. When validated using a publicly available database of retinal images, this segmentation achieves a true positive rate of 70.27%, false positive rate of 2.83%, and accuracy score of 0.9371. Vessel edges are then more precisely localised using image profiles computed perpendicularly across a spline fit of each detected vessel centreline, so that both local and global changes in vessel diameter can be readily quantified. Using a second image database, we show that the diameters output by our algorithm display good agreement with the manual measurements made by three independent observers. We conclude that the improved speed and generality offered by our algorithm are achieved without sacrificing accuracy. The algorithm is implemented in MATLAB along with a graphical user interface, and we have made the source code freely available.
Resumo:
Pressure myography studies have played a crucial role in our understanding of vascular physiology and pathophysiology. Such studies depend upon the reliable measurement of changes in the diameter of isolated vessel segments over time. Although several software packages are available to carry out such measurements on small arteries and veins, no such software exists to study smaller vessels (<50 µm in diameter). We provide here a new, freely available open-source algorithm, MyoTracker, to measure and track changes in the diameter of small isolated retinal arterioles. The program has been developed as an ImageJ plug-in and uses a combination of cost analysis and edge enhancement to detect the vessel walls. In tests performed on a dataset of 102 images, automatic measurements were found to be comparable to those of manual ones. The program was also able to track both fast and slow constrictions and dilations during intraluminal pressure changes and following application of several drugs. Variability in automated measurements during analysis of videos and processing times were also investigated and are reported. MyoTracker is a new software to assist during pressure myography experiments on small isolated retinal arterioles. It provides fast and accurate measurements with low levels of noise and works with both individual images and videos. Although the program was developed to work with small arterioles, it is also capable of tracking the walls of other types of microvessels, including venules and capillaries. It also works well with larger arteries, and therefore may provide an alternative to other packages developed for larger vessels when its features are considered advantageous.
Resumo:
The most promising way to maintain reliable data transfer across the rapidly fluctuating channels used by next generation multiple-input multiple-output communications schemes is to exploit run-time variable modulation and antenna configurations. This demands that the baseband signal processing architectures employed in the communications terminals must provide low cost and high performance with runtime reconfigurability. We present a softcore-processor based solution to this issue, and show for the first time, that such programmable architectures can enable real-time data operation for cutting-edge standards
such as 802.11n; furthermore, by exploiting deep processing pipelines and interleaved task execution, the cost and performance of these architectures is shown to be on a par with traditional dedicated circuit based solutions. We believe this to be the first such programmable architecture to achieve this, and the combination of implementation efficiency and programmability makes this implementation style the most promising approach for hosting such dynamic architectures.
Resumo:
The nearby A4-type star Fomalhaut hosts a debris belt in the form of an eccentric ring, which is thought to be caused by dynamical influence from a giant planet companion. In 2008, a detection of a point source inside the inner edge of the ring was reported and was interpreted as a direct image of the planet, named Fomalhaut b. The detection was made at 600-800nm, but no corresponding signatures were found in the near-infrared range, where the bulk emission of such a planet should be expected. Here, we present deep observations of Fomalhaut with Spitzer/IRAC at 4.5 µm, using a novel point-spread function subtraction technique based on angular differential imaging and Locally Optimized Combination of Images, in order to substantially improve the Spitzer contrast at small separations. The results provide more than an order ofmagnitude improvement in the upper flux limit of Fomalhaut b and exclude the possibility that any flux from a giant planet surface contributes to the observed flux at visible wavelengths. This renders any direct connection between the observed light source and the dynamically inferred giant planet highly unlikely. We discuss several possible interpretations of the total body of observations of the Fomalhaut system and find that the interpretation that best matches the available data for the observed source is scattered light from a transient or semi-transient dust cloud. © 2012 The American Astronomical Society. All rights reserved.
Resumo:
Genetically-engineered bacteria and reactive DNA networks detect edges of objects, as done in our retinas and as also found within computer vision. We now demonstrate that simple molecular logic systems (a combination of a pH sensor, a photo acid generator and a pH buffer spread on paper) without any organization can achieve this relatively complex computational goal with good-fidelity. This causes a jump in the complexity achievable by molecular logic-based computation and extends its applicability. The molecular species involved in light dose-driven 'off-on-off' fluorescence is diverted in the ‘on’ state by proton diffusion from irradiated to unirradiated regions where it escapes a strong quencher, thus visualizing the edge of a mask.