58 resultados para ELECTROSPRAY IONIZATION TANDEM MASS SPECTROMETRY (ESI-MSn)
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The potential use of negative electrospray ionisation mass spectrometry (ESI-MS) in the characterisation of the three polyacetylenes common in carrots (Daucus carota) has been assessed. The MS scans have demonstrated that the polyacetylenes undergo a modest degree of in-source decomposition in the negative ionisation mode while the positive ionisation mode has shown predominantly sodiated ions and no [M+H](+) ions. Tandem mass spectrometric (MS/MS) studies have shown that the polyacetylenes follow two distinct fragmentation pathways: one that involves cleavage of the C3-C4 bond and the other with cleavage of the C7-C8 bond. The cleavage of the C7-C8 bond generated product ions m/z 105.0 for falcarinol, m/z 105/107.0 for falcarindiol, m/z 147.0/149.1 for falcarindiol-3-acetate. In addition to these product ions, the transitions m/z 243.2 -> 187.1 (falcarinol), m/z 259.2 -> 203.1 (falcarindiol), m/z 301.2 -> 255.2/203.1 (falcarindiol-3-acetate), mostly from the C3-C4 bond cleavage, can form the basis of multiple reaction monitoring (MRM)-quantitative methods which are poorly represented in the literature. The 'MS3' experimental data confirmed a less pronounced homolytic cleavage site between the C11-C12 bond in the falcarinol-type polacetylenes. The optimised liquid chromatography (LC)/MS conditions have achieved a baseline chromatographic separation of the three polyacetylenes investigated within 40 min total run-time. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
A method is described for the quantitative confirmation of halofuginone (HFG) residues in chicken liver and eggs. This method is based on LC coupled to positive ion electrospray MS-MS of the tissue extracts, prepared by trypsin digestion of the tissues followed by liquid-liquid extraction and final clean-up using Solid Phase Extraction (SPE). The [M+H](+) ion at m/z 416 is monitored along with four transitions at m/z 398, 138, 120 and 100. The method has been validated according to the draft EU criteria for the analysis of veterinary drug residues at 15, 30 and 45 mug kg (-1) in liver and 5, 15 and 50 mug kg (-1) in eggs. The new analytical limits, CCalpha and CCbeta were calculated for liver and were 35.4 and 43.6 mug kg (-1), respectively. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A new approach to the search for residues of unknown growth promoting agents such as anabolic steroids and -agonists in feed is presented. Following primary extraction and clean-up, samples are separated using gradient liquid chromatography (LC). The effluent is split towards two identical 96-well fraction collectors and an optional electrospray quadrupole time-of-flight mass spectrometry (QTOFMS) system for accurate mass measurement. One 96-well plate is used for a bioassay (enzyme-immuno assay, receptor assay) and will detect the bioactivity and position of the relevant peak in the chromatogram. The positive well in the second 96-well plate is used for identification by LC/QTOFMS/MS. The value of this LC/bioassay/QTOFMS/MS methodology is highlighted by the finding and structure elucidation of a new -agonist in a feed extract.
Resumo:
A rapid liquid chromatographic-tandem mass spectrometric (LC-MS/MS) multi-residue method for the simultaneous quantitation and identification of sixteen synthetic growth promoters and bisphenol A in bovine milk has been developed and validated. Sample preparation was straightforward, efficient and economically advantageous. Milk was extracted with acetonitrile followed by phase separation with NaCl. After centrifugation, the extract was purified by dispersive solid-phase extraction with C18 sorbent material. The compounds were analysed by reversed-phase LC-MS/MS using both positive and negative ionization and operated in multiple reaction monitoring (MRM) mode, acquiring two diagnostic product ions from each of the chosen precursor ions for unambiguous confirmation. Total chromatographic run time was less than 10 min for each sample. The method was validated at a level of 1 mu g L-1. A wide variety of deuterated internal standards were used to improve method performance. The accuracy and precision of the method were satisfactory for all analytes. The confirmative quantitative liquid chromatographic tandem mass spectrometric (LC-MS/MS) method was validated according to Commission Decision 2002/657/EC. The decision limit (CC alpha) and the detection capability (CC beta) were found to be below the chosen validation level of 1 mu g L-1 for all compounds. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Triclabendazole is the only anthelmintic drug, which is active against immature, mature and adult stages of fluke. The objective of this work was to develop an analytical method to quantify and confirm the presence of triclabendazole residues around the MRL. In this work, a new analytical method was developed, which extended dynamic range to 1–100 and 5–1000 g kg-1 for milk and tissue, respectively. This was achieved using a mobile phase containing trifluoroacetic acid (pKa of 0.3), which resulted in the formation of the protonated pseudomolecular ions, [M+H]+, of triclabendazole metabolites. Insufficient<br/>ionisation of common mobile phase additives due to low pKa values (<2) was identified as the cause of poor linearity. The new mobile phase conditions allowed the analysis of triclabendazole residues in liver, muscle and milk encompassing their EU maximum residue levels (MRL) (250, 225 and 10 g kg-1 respectively). Triclabendazole residues were extracted using a modified QuEChERS method and analysed by positive electrospray ionisation mass spectrometry with all analytes eluted by 2.23 min. The method was validated at the MRL according to Commission Decision (CD) 2002/657/EC criteria. The decision limit (CC) of the method was in the range of 250.8–287.2, 2554.9–290.8 and 10.9–12.1 g kg-1 for liver, muscle and milk, respectively. The performance of the method was successfully verified for triclabendazole in muscle by participating in a proficiency study, the method was also applied to incurred liver, muscle and milk samples.
Resumo:
Measurement of steroid esters in bovine hair samples, using sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS), provides a powerful tool for identifying animals treated illicitly with growth promoters. The successful application of such testing requires appropriate sampling of hair from treated animals. This paper describes the results of hair analysis by LC-MS/MS for two animal studies in which animals were treated with estradiol-3-benzoate and nortestosterone decanoate. The results from the first animal study indicate that animals treated with these anabolic steroids may not always be identified from analysis of hair samples; positive test results occur sporadically and only for some of the treated animals. The results from the second animal study identify conditions attaching to positive hair samples, such as, that concentrations of steroid esters in hair are related to distance of sampling from point of injection and to time post-treatment, that concentrations of steroid esters in hair are related to dose given to the animal but that this relationship may vary over time post-treatment, and that steroid esters may be measured in regrowth hair taken some weeks after treatment. Steroid esters are determined along the length of the hair, confirming that accumulation of steroid esters into hair occurs from various sources, including blood, sweat and sebum. The reported research provides some useful insights into the mechanisms governing the persistence of steroid esters in bovine hair following illicit treatment with growth promoters. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A simple, new method permitting the simultaneous determination and confirmation of trace residues of 24 different growth promoters and metabolites using liquid chromatography-mass spectrometry was developed and validated. The compounds were extracted from bovine tissue using acetonitrile; sodium sulphate was also added at this stage to aid with purification. The resulting mixture was then evaporated to approximately 1 ml and subsequently centrifuged at high speed and an aliquot injected onto the LC-MS/MS system. The calculated CC values ranged between 0.11 and 0.46 mu g kg-1; calculated CC were in the range 0.19-0.79 mu g kg-1. Accuracy, measurement of uncertainty, repeatability and linearity were also determined for each analyte. The analytical method was applied to a number of bovine tissue samples imported into Ireland from third countries. Levels of progesterone were found in a number of samples at concentrations ranging between 0.28 and 30.30 mu g kg-1. Levels of alpha- and beta-testosterone were also found in a number of samples at concentrations ranging between 0.22 and 8.63 mu g kg-1 and between 0.16 and 2.08 mu g kg-1 respectively.
Resumo:
An LC/MS/MS method was developed and validated for the simultaneous identification, confirmation, and quantification of 12 glucocorticoids in bovine milk. The method was validated in accordance with the criteria defined in Commission Decision 2002/657/EC. The developed method can detect and confirm the presence of dexamethasone, betamethasone, prednisolone, flumethasone, 6 alpha-methylprednisolone, fluorometholone, triamcinolone acetonide, prednisone, cortisone, hydrocortisone, clobetasol propionate, and clobetasol butyrate in bovine milk. Milk samples are extracted with acetonitrile; sodium chloride is subsequently added to aid partition of the milk and acetonitrile mixture. The acetonitrile extract is then subjected to liquid-liquid purification by the addition of hexane. The purified extract is evaporated to dryness and reconstituted in a water acetonitrile mixture, and determination is carried out by LC/MS/MS. The method permits analysis of up to 30 samples in 1 day.
Resumo:
A rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous identification, confirmation and quantitation of seven licensed anti-inflammatory drugs (AIDS) in bovine milk. The method was validated in accordance with the criteria defined in Commission Decision 2002/657/EC. Two classes of AIDS were investigated, corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs). The developed method is capable of detecting and confirming dexamethasone (DXM), betamethasone (BTM), prednisolone (FRED), tolfenamic acid (TV), 5-hydroxy flunixin (5-OH-FLU). meloxicam (MLX) and 4-methyl amino antipyrine (4-MAA) at their associated maximum residue limits (MRLs). These compounds represent all the corticosteroids and NSAIDs licensed for use in bovine animals producing milk for human consumption. These compounds have never been analysed before in the same method and also 4-methyl amino antipyrine has never been analysed with the other licensed NSAIDs. The method can be considered rapid as permits the analysis of up to 30 samples in one day. Milk samples are extracted with acetonitrile; sodium chloride is added to aid partition of the milk and acetonitrile mixture. The acetonitrile extract is then subjected to liquid-liquid purification by the addition of hexane. The purified extract is finally evaporated to dryness and reconstituted in a water/acetonitrile mixture and determination is carried out by LC-MS/MS. Decision limit (CC alpha) values and detection capability (CC beta) values have been established for each compound. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A confirmatory method has been developed and validated that allows for the simultaneous detection of medroxyprogesterone acetate (MPA), megestrol acetate (MGA), melengestrol acetate (MLA), chlormadinone acetate (CMA) and delmadinone acetate (DMA) in animal kidney fat using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The compounds were extracted from kidney fat using acetonitrile, defatted using a hexane wash and subsequent saponification. Extracts were then purified on Isolute CN solid-phase extraction cartridges and analysed by LC-MS/MS. The method was validated in animal kidney fat in accordance with the criteria defined in Commission Decision 2002/657/EC. The decision limit (CC) was calculated to be 0.12, 0.48, 0.40, 0.63 and 0.54 g kg-1, respectively, for MPA, MGA, MLA, DMA and CMA, with respective detection capability (CC) values of 0.20, 0.81, 0.68, 1.07 and 0.92 g kg-1. The measurement uncertainty of the method was estimated at 16, 16, 19, 27 and 26% for MPA, MGA, MLA, DMA and CMA, respectively. Fortifying kidney fat samples (n = 18) in three separate assays showed the accuracy of the method to be between 98 and 100%. The precision of the method, expressed as % RSD, for within-laboratory reproducibility at three levels of fortification (1, 1.5 and 2 g kg-1 for MPA, 5, 7.5 and 10 g kg-1 for MGA, MLA, DMA and CMA) was less than 5% for all analytes.
Resumo:
An endocrine disruptor (ED) is an exogenous compound that interferes with the body's endocrine system. Exposure to EDs may result in adverse health effects such as infertility and cancer. EDs are composed of a vast group of chemicals including compounds of natural origin such as phytoestrogens or mycotoxins and a wide range of man-made chemicals such as pesticides. Synthetic compounds may find their way into the food chain where a number of them can biomagnify. Additionally, processing activities and food contact materials may add further to the already existing pool of food contaminants. Thus, our diet is considered to be one of the main exposure routes to EDs. Some precautionary legislation has already been introduced to control production and/or application of some persistent organic pollutants with ED characteristics. However, newly emerging EDs with bioaccumulative properties have recently been reported to appear at lower tiers of the food chain but have not been monitored at the grander scale. Milk and dairy products are a major component of our diet, thus it is important to monitor them for EDs. However, most methods developed to date are devoted to one group of compounds at a time. The UHPLC-MS/MS method described here has been validated according to EC decision 2002/657/EC and allows simultaneous extraction, detection, quantitation and confirmation of 19 EDs in milk. The method calibration range is between 0.50 and 20.0 μg kg with coefficients of determination above 0.99 for all analytes. Precision varied from 4.7% to 23.4% in repeatability and reproducibility studies. Established CCα and CCβ values (0.11-0.67 μg kg) facilitate fast, reliable, quantitative and confirmatory analysis of sub μg kg levels of a range of EDs in milk.