160 resultados para ELECTRICAL STEELS

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an invited contribution in a special issue of the Journal of Cement and Concrete Composites

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon-on-insulator (SOI) substrates incorporating tungsten silicide ground planes (GPs) have been shown to offer the lowest reported crosstalk figure of merit for application in mixed signal integrated circuits. The inclusion of the silicide layer in the structure may lead to stress or defects in the overlying SOI layers and resultant degradation of device performance. It is therefore essential to establish the quality of the silicon on the GPSOI substrate. MOS capacitor structures have been employed in this paper to characterize these GPSOI substrates for the first time. High quality MOS capacitor characteristics have been achieved with minority carrier lifetime of similar to 0.8 ms. These results show that the substrate is suitable for device manufacture with no degradation in the silicon due to stress or metallic contamination resulting from the inclusion of the underlying silicide layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multi-million-electron-volt proton beams accelerated during high-intensity laser-solid interactions have been used as a particle probe to investigate the electric charging of microscopic targets laser-irradiated at intensity similar to10(19) W cm(2). The charge-up, detected via the proton deflection with high temporal and spatial resolution, is due to the escape of energetic electrons generated during the interaction. The analysis of the data is supported by three- dimensional tracing of the proton trajectories. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the sensitivity of low-frequency electrical measurements to microbe-induced metal sulfide precipitation. Three identical sand-packed monitoring columns were used; a geochemical column, an electrical column and a control column. In the first experiment, continuous upward flow of nutrients and metals in solution was established in each column. Cells of Desulfovibrio vulgaris (D. vulgaris) were injected into the center of the geochemical and electrical columns. Geochemical sampling and post-experiment destructive analysis showed that microbial induced sulfate reduction led to metal precipitation on bacteria cells, forming motile biominerals. Precipitation initially occurred in the injection zone, followed by chemotactic migration of D. vulgaris and ultimate accumulation around the nutrient source at the column base. Results from this experiment conducted with metals show (1) polarization anomalies, up to 14 mrad, develop at the bacteria injection and final accumulation areas, (2) the onset of polarization increase occurs concurrently with the onset of lactate consumption, (3) polarization profiles are similar to calculated profiles of the rate of lactate consumption, and (4) temporal changes in polarization and conduction correlate with a geometrical rearrangement of metal-coated bacterial cells. In a second experiment, the same biogeochemical conditions were established except that no metals were added to the flow solution. Polarization anomalies were absent when the experiment was replicated without metals in solution. We therefore attribute the polarization increase observed in the first experiment to a metal-fluid interfacial mechanism that develops as metal sulfides precipitate onto microbial cells and form biominerals. Temporal changes in polarization and conductivity reflect changes in (1) the amount of metal-fluid interfacial area, and (2) the amount of electronic conduction resulting from microbial growth, chemotactic movement and final coagulation. This polarization is correlated with the rate of microbial activity inferred from the lactate concentration gradient, probably via a common total metal surface area effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We performed electrical measurements on sands flushed with bacterial suspensions of varying concentration. The first experiment was conducted with Shewanella putrefaciens (biomass 0â??0.5 mg/L) and the second with Escherichia coli (biomass 0â??42 mg/L). We measured a biomass-dependent low-frequency (10 Hz) polarization. At cell density 12 mg/L polarization increased (up to 15%). We attribute the decrease in polarization at low cell density to alteration of the mineral-fluid interface due to mineral-cell interactions. The polarization enhancement at higher cell density is possibly a pore throat mechanism resulting from decreased ionic mobility and/or electron transfer due to cell accumulation in pores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An artificial neural network (ANN) model is developed for the analysis and simulation of the correlation between the properties of maraging steels and composition, processing and working conditions. The input parameters of the model consist of alloy composition, processing parameters (including cold deformation degree, ageing temperature, and ageing time), and working temperature. The outputs of the ANN model include property parameters namely: ultimate tensile strength, yield strength, elongation, reduction in area, hardness, notched tensile strength, Charpy impact energy, fracture toughness, and martensitic transformation start temperature. Good performance of the ANN model is achieved. The model can be used to calculate properties of maraging steels as functions of alloy composition, processing parameters, and working condition. The combined influence of Co and Mo on the properties of maraging steels is simulated using the model. The results are in agreement with experimental data. Explanation of the calculated results from the metallurgical point of view is attempted. The model can be used as a guide for further alloy development.