8 resultados para Distributed feedback lasers
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Catalytic oxidation reaction monitoring has been performed for the first time with a trace gas carbon dioxide analyser based on a continuous wave (cw), thermoelectrically cooled (TEC), distributed feedback (DFB) quantum cascade laser (QCL) operating at around 2307 cm-1. The reaction kinetics for carbon monoxide oxidation over a platinum catalyst supported on yttria-stabilised zirconia were followed by the QCL CO2 analyser and showed that it is a powerful new tool for measuring low reaction rates associated with low surface area model catalysts operating at atmospheric pressures. A detection limit was determined of 40 ppb (1 standard deviation) for a 0.1 s average and a residual absorption standard deviation of 1.9×10-4. © 2012 Springer-Verlag.
Resumo:
Focusing on the uplink, where mobile users (each with a single transmit antenna) communicate with a base station with multiple antennas, we treat multiple users as antennas to enable spatial multiplexing across users. Introducing distributed closed-loop spatial multiplexing with threshold-based user selection, we propose two uplink channel-assigning strategies with limited feedback. We prove that the proposed system also outperforms the standard greedy scheme with respect to the degree of fairness, measured by the variance of the time averaged throughput. For uplink multi-antenna systems, we show that the proposed scheduling is a better choice than the greedy scheme in terms of the average BER, feedback complexity, and fairness. The numerical results corroborate our findings
Resumo:
In this paper, we investigate an amplify-and-forward (AF) multiple-input multiple-output - spatial division multiplexing (MIMO-SDM) cooperative wireless networks, where each network node is equipped with multiple antennas. In order to deal with the problems of signal combining at the destination and cooperative relay selection, we propose an improved minimum mean square error (MMSE) signal combining scheme for signal recovery at the destination. Additionally, we propose two distributed relay selection algorithms based on the minimum mean squared error (MSE) of the signal estimation for the cases where channel state information (CSI) from the source to the destination is available and unavailable at the candidate nodes. Simulation results demonstrate that the proposed combiner together with the proposed relay selection algorithms achieve higher diversity gain than previous approaches in both flat and frequency-selective fading channels.
Resumo:
Our key contribution is a flexible, automated marking system that adds desirable functionality to existing E-Assessment systems. In our approach, any given E-Assessment system is relegated to a data-collection mechanism, whereas marking and the generation and distribution of personalised per-student feedback is handled separately by our own system. This allows content-rich Microsoft Word feedback documents to be generated and distributed to every student simultaneously according to a per-assessment schedule.
The feedback is adaptive in that it corresponds to the answers given by the student and provides guidance on where they may have gone wrong. It is not limited to simple multiple choice which are the most prescriptive question type offered by most E-Assessment Systems and as such most straightforward to mark consistently and provide individual per-alternative feedback strings. It is also better equipped to handle the use of mathematical symbols and images within the feedback documents which is more flexible than existing E-Assessment systems, which can only handle simple text strings.
As well as MCQs the system reliably and robustly handles Multiple Response, Text Matching and Numeric style questions in a more flexible manner than Questionmark: Perception and other E-Assessment Systems. It can also reliably handle multi-part questions where the response to an earlier question influences the answer to a later one and can adjust both scoring and feedback appropriately.
New question formats can be added at any time provided a corresponding marking method conforming to certain templates can also be programmed. Indeed, any question type for which a programmatic method of marking can be devised may be supported by our system. Furthermore, since the student’s response to each is question is marked programmatically, our system can be set to allow for minor deviations from the correct answer, and if appropriate award partial marks.
Resumo:
Multiuser selection scheduling concept has been recently proposed in the literature in order to increase the multiuser diversity gain and overcome the significant feedback requirements for the opportunistic scheduling schemes. The main idea is that reducing the feedback overhead saves per-user power that could potentially be added for the data transmission. In this work, the authors propose to integrate the principle of multiuser selection and the proportional fair scheduling scheme. This is aimed especially at power-limited, multi-device systems in non-identically distributed fading channels. For the performance analysis, they derive closed-form expressions for the outage probabilities and the average system rate of the delay-sensitive and the delay-tolerant systems, respectively, and compare them with the full feedback multiuser diversity schemes. The discrete rate region is analytically presented, where the maximum average system rate can be obtained by properly choosing the number of partial devices. They optimise jointly the number of partial devices and the per-device power saving in order to maximise the average system rate under the power requirement. Through the authors’ results, they finally demonstrate that the proposed scheme leveraging the saved feedback power to add for the data transmission can outperform the full feedback multiuser diversity, in non-identical Rayleigh fading of devices’ channels.
Resumo:
Background The use of simulation in medical education is increasing, with students taught and assessed using simulated patients and manikins. Medical students at Queen’s University of Belfast are taught advanced life support cardiopulmonary resuscitation as part of the undergraduate curriculum. Teaching and feedback in these skills have been developed in Queen’s University with high-fidelity manikins. This study aimed to evaluate the effectiveness of video compared to verbal feedback in assessment of student cardiopulmonary resuscitation performance Methods Final year students participated in this study using a high-fidelity manikin, in the Clinical Skills Centre, Queen’s University Belfast. Cohort A received verbal feedback only on their performance and cohort B received video feedback only. Video analysis using ‘StudioCode’ software was distributed to students. Each group returned for a second scenario and evaluation 4 weeks later. An assessment tool was created for performance assessment, which included individual skill and global score evaluation. Results One hundred thirty eight final year medical students completed the study. 62 % were female and the mean age was 23.9 years. Students having video feedback had significantly greater improvement in overall scores compared to those receiving verbal feedback (p = 0.006, 95 % CI: 2.8–15.8). Individual skills, including ventilation quality and global score were significantly better with video feedback (p = 0.002 and p < 0.001, respectively) when compared with cohort A. There was a positive change in overall score for cohort B from session one to session two (p < 0.001, 95 % CI: 6.3–15.8) indicating video feedback significantly benefited skill retention. In addition, using video feedback showed a significant improvement in the global score (p < 0.001, 95 % CI: 3.3–7.2) and drug administration timing (p = 0.004, 95 % CI: 0.7–3.8) of cohort B participants, from session one to session two. Conclusions There is increased use of simulation in medicine but a paucity of published data comparing feedback methods in cardiopulmonary resuscitation training. Our study shows the use of video feedback when teaching cardiopulmonary resuscitation is more effective than verbal feedback, and enhances skill retention. This is one of the first studies to demonstrate the benefit of video feedback in cardiopulmonary resuscitation teaching.