117 resultados para Discrete generator coordinate
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
A generator for the automated design of Discrete Cosine Transform (DCT) cores is presented. This can be used to rapidly create silicon circuits from a high level specification. These compare very favourably with existing designs. The DCT cores produced are scaleable in terms of point size as well as input/output and coefficient wordlengths. This provides a high degree of flexibility. An example, 8-point 1D DCT design, produced occupies less than 0.92 mm when implemented in a 0.35µ double level metal CMOS technology. This can be clocked at a rate of 100MHz.
Resumo:
A method for simulation of acoustical bores, useful in the context of sound synthesis by physical modeling of woodwind instruments, is presented. As with previously developed methods, such as digital waveguide modeling (DWM) [Smith, Comput. Music J. 16, pp 74-91 (1992)] and the multi convolution algorithm (MCA) [Martinez et al., J. Acoust. Soc. Am. 84, pp 1620-1627 (1988)], the approach is based on a one-dimensional model of wave propagation in the bore. Both the DWM method and the MCA explicitly compute the transmission and reflection of wave variables that represent actual traveling pressure waves. The method presented in this report, the wave digital modeling (WDM) method, avoids the typical limitations associated with these methods by using a more general definition of the wave variables. An efficient and spatially modular discrete-time model is constructed from the digital representations of elemental bore units such as cylindrical sections, conical sections, and toneholes. Frequency-dependent phenomena, such as boundary losses, are approximated with digital filters. The stability of a simulation of a complete acoustic bore is investigated empirically. Results of the simulation of a full clarinet show that a very good concordance with classic transmission-line theory is obtained.
Resumo:
[M2L3] coordination cages and linear [M2L3]infinity polymers of the rigid, bridging diphosphines bis(diphenylphosphino)acetylene (dppa) and trans-1,2-bis(diphenylphosphino)ethylene (dppet) with silver(I) salts have been investigated in the solution and solid states. Unlike flexible diphosphines, 1:1 dppa/AgX mixtures do not selectively form discrete [Ag2(diphos)2(X)2] macrocycles; instead dynamic mixtures of one-, two- and three-coordinate complexes are formed. However, 3:2 dppa/AgX ratios (X = SbF6. BF4, O3SCF3 or NO3) do lead selectively to new [M2L3] triply bridged cage complexes [Ag2(dppa)3(X)2] 1a-d (X = SbF6 a, BF4 b, O3SCF3 c, NO3 d), which do not exhibit Ag-P bond dissociation at room temperature on the NMR time scale (121 MHz). Complexes la-d were characterised by X-ray crystallography and were found to have small internal cavities, helical conformations and multiple intramolecular aromatic interactions. The nucleophilicity of the anion subtly influences the cage shape: Increasing nucleophilicity from SbF6 (1a) through BF4 (1b) and O3SCF3 (1c) to NO3 (1d) increases the pyramidal distortion at the AgP3 centres, stretching the cage framework (with Ag...Ag distances increasing from 5.48 in 1a to 6.21 A in 1d) and giving thinner internal cavities. Crystal packing strongly affected the size of the helical twist angle, and no correlation between this parameter and the Ag-Ag distance was observed. When crystalline 1c was stored in its supernatant for 16 weeks, conversion occured to the isostoichiometric [M2L3]infinity coordination polymer [Ag(dppa)2Ag(dppa)(O3SCF3)2]infinity (1c'). X-ray crystallography revealed a structure with ten-membered Ag2(dppa)2 rings linked into infinite one-dimensional chains by a third dppa unit. The clear structural relationship between this polymer and the precursor cage 1c suggests a novel example of ring-opening polymerisation. With dppet, evidence for discrete [M2L3] cages was also found in solution, although 31P NMR spectroscopy suggested some Ag-P bond dissociation. On crystallisation, only the corresponding ring-opened polymeric structures [M2L3]infinity could be obtained. This may be because the greater steric bulk of dppet versus dppa destabilises the cage and favours the ring-opening polymerisation.
Resumo:
Architectures and methods for the rapid design of silicon cores for implementing discrete wavelet transforms over a wide range of specifications are described. These architectures are efficient, modular, scalable, and cover orthonormal and biorthogonal wavelet transform families. They offer efficient hardware utilization by exploiting a number of core wavelet filter properties and allow the creation of silicon designs that are highly parameterized, including in terms of wavelet type and wordlengths. Control circuitry is embedded within these systems allowing them to be cascaded for any desired level of decomposition without any interface glue logic. The time to produce chip designs for a specific wavelet application is typically less than a day and these are comparable in area and performance to handcrafted designs. They are also portable across a wide range of silicon foundries and suitable for field programmable gate array and programmable logic data implementation. The approach described has also been extended to wavelet packet transforms.
Resumo:
This paper presented results from a details and comprehensive simulation using finite element method of the practical operation of an electrical machine. The results it displayed have been used in practice to design more efficient equipment.
Resumo:
We establish a mapping between a continuous-variable (CV) quantum system and a discrete quantum system of arbitrary dimension. This opens up the general possibility to perform any quantum information task with a CV system as if it were a discrete system. The Einstein-Podolsky-Rosen state is mapped onto the maximally entangled state in any finite-dimensional Hilbert space and thus can be considered as a universal resource of entanglement. An explicit example of the map and a proposal for its experimental realization are discussed.
Resumo:
The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium, the hydrogen atom and the hydrogen molecular ion are presented. At very high laser intensity, above the saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments. (C) 2004 American Institute of Physics.
Resumo:
The amount of distributed generation connected to the distribution network is increasing. To use this resource more effectively, splitting of the distribution network, or islanding the system, for prevention of power outages is being considered by some utilities. In this paper an islanding method that avoids out-ofsynchronism re-closure is proposed. The island is kept in synchronism with the rest of the utility while it is not electrically connected. This is referred to as synchronous islanded operation. A phase difference control algorithm, developed by the authors, was tested in a single set scenario on a 50-kVA diesel generator using two different governors. These are the “standard product” variable gain governor of the diesel generator and a governor developed by the authors, which utilizes supplementary inputs in addition to engine speed. The results show that phase difference can be controlled within acceptable limits, both in steady state and after load disturbances are applied. The advantages of employing supplementary governor inputs are fully evaluated.
Resumo:
A flexible, mass-conservative numerical technique for solving the advection-dispersion equation for miscible contaminant transport is presented. The method combines features of puff transport models from air pollution studies with features from the random walk particle method used in water resources studies, providing a deterministic time-marching algorithm which is independent of the grid Peclet number and scales from one to higher dimensions simply. The concentration field is discretised into a number of particles, each of which is treated as a point release which advects and disperses over the time interval. The dispersed puff is itself discretised into a spatial distribution of particles whose masses can be pre-calculated. Concentration within the simulation domain is then calculated from the mass distribution as an average over some small volume. Comparison with analytical solutions for a one-dimensional fixed-duration concentration pulse and for two-dimensional transport in an axisymmetric flow field indicate that the algorithm performs well. For a given level of accuracy the new method has lower computation times than the random walk particle method.