97 resultados para Defeasible Logic
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This paper introduces a logical model of inductive generalization, and specifically of the machine learning task of inductive concept learning (ICL). We argue that some inductive processes, like ICL, can be seen as a form of defeasible reasoning. We define a consequence relation characterizing which hypotheses can be induced from given sets of examples, and study its properties, showing they correspond to a rather well-behaved non-monotonic logic. We will also show that with the addition of a preference relation on inductive theories we can characterize the inductive bias of ICL algorithms. The second part of the paper shows how this logical characterization of inductive generalization can be integrated with another form of non-monotonic reasoning (argumentation), to define a model of multiagent ICL. This integration allows two or more agents to learn, in a consistent way, both from induction and from arguments used in the communication between them. We show that the inductive theories achieved by multiagent induction plus argumentation are sound, i.e. they are precisely the same as the inductive theories built by a single agent with all data. © 2012 Elsevier B.V.
Resumo:
Integrated "ICT chromophore-receptor" systems show ion-induced shifts in their electronic absorption spectra. The wavelength of observation can be used to reversibly configure the system to any of the four logic operations permissible with a single input (YES, NOT, PASS 1, PASS 0), under conditions of ion input and transmittance output. We demonstrate these with dyes integrated into Tsien's calcium receptor, 1-2. Applying multiple ion inputs to 1-2 also allows us to perform two- or three-input OR or NOR operations. The weak fluorescence output of 1 also shows YES or NOT logic depending on how it is configured by excitation and emission wavelengths. Integrated "receptor(1)-ICT chromophore-receptor(2)" systems 3-5 selectively target two ions into the receptor terminals. The ion-induced transmittance output of 3-5 can also be configured via wavelength to illustrate several logic types including, most importantly, XOR. The opposite effects of the two ions on the energy of the chromophore excited state is responsible for this behaviour. INHIBIT and REVERSE IMPLICATION are two of the other logic types seen here. Integration of XOR logic with a preceding OR operation can be arranged by using three ion inputs. The fluorescence output of these systems can be configured via wavelength to display INHIBIT or NOR logic under two-input conditions. The superposition or multiplicity of logic gate configurations is an unusual consequence of the ability to simultaneously observe multiple wavelengths.
Resumo:
In this paper, we propose an adaptive approach to merging possibilistic knowledge bases that deploys multiple operators instead of a single operator in the merging process. The merging approach consists of two steps: one is called the splitting step and the other is called the combination step. The splitting step splits each knowledge base into two subbases and then in the second step, different classes of subbases are combined using different operators. Our approach is applied to knowledge bases which are self-consistent and the result of merging is also a consistent knowledge base. Two operators are proposed based on two different splitting methods. Both operators result in a possibilistic knowledge base which contains more information than that obtained by the t-conorm (such as the maximum) based merging methods. In the flat case, one of the operators provides a good alternative to syntax-based merging operators in classical logic.