77 resultados para DC Distribution System
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Future power systems are expected to integrate large-scale stochastic and intermittent generation and load due to reduced use of fossil fuel resources, including renewable energy sources (RES) and electric vehicles (EV). Inclusion of such resources poses challenges for the dynamic stability of synchronous transmission and distribution networks, not least in terms of generation where system inertia may not be wholly governed by large-scale generation but displaced by small-scale and localised generation. Energy storage systems (ESS) can limit the impact of dispersed and distributed generation by offering supporting reserve while accommodating large-scale EV connection; the latter (load) also participating in storage provision. In this paper, a local energy storage system (LESS) is proposed. The structure, requirement and optimal sizing of the LESS are discussed. Three operating modes are detailed, including: 1) storage pack management; 2) normal operation; and 3) contingency operation. The proposed LESS scheme is evaluated using simulation studies based on data obtained from the Northern Ireland regional and residential network.
Resumo:
Heat pumps can provide domestic heating at a cost that is competitive with oil heating in particular. If the electricity supply contains a significant amount of renewable generation, a move from fossil fuel heating to heat pumps can reduce greenhouse gas emissions. The inherent thermal storage of heat pump installations can also provide the electricity supplier with valuable flexibility. The increase in heat pump installations in the UK and Europe in the last few years poses a challenge for low-voltage networks, due to the use of induction motors to drive the pump compressors. The induction motor load tends to depress voltage, especially on starting. The paper includes experimental results, dynamic load modelling, comparison of experimental results and simulation results for various levels of heat pump deployment. The simulations are based on a generic test network designed to capture the main characteristics of UK distribution system practice. The simulations employ DIgSlILENT to facilitate dynamic simulations that focus on starting current, voltage variations, active power, reactive power and switching transients.
Resumo:
This paper is concerned with the voltage and reactive power issues surrounding the connection of Distributed Generation (DG) on the low-voltage (LV) distribution network. The presented system-wide voltage control algorithm consists of three stages. Firstly available reactive power reserves are utilized. Then, if required, DG active power output is curtailed. Finally, curtailment of non-critical site demand is considered. The control methodology is tested on a variant of the 13-bus IEEE Node Radial Distribution Test Feeder. The presented control algorithm demonstrated that the distribution system operator (DSO) can maintain voltage levels within a desired statutory range by dispatching reactive power from DG or network devices. The practical application of the control strategy is discussed.
Resumo:
The power system of the future will have a hierarchical structure created by layers of system control from via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the concept of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called ‘back-up generation’ needed to support an 80% renewable energy portfolio in Europe by 2050.
Resumo:
Power system islanding can improve the continuity of power supply. Synchronous islanded operation enables the islanded system to remain in phase with the main power system while not electrically connected, so avoiding out-of-synchronism re-closure. Specific consideration is required for the multiple-set scenario. In this paper a suitable island management system is proposed, with the emphasis being on maximum island flexibility by allowing passive islanding transitions to occur, facilitated by intelligent control. These transitions include: island detection, identification, fragmentation, merging and return-to-mains. It can be challenging to detect these transitions while maintaining syn-chronous islanded operation. The performance of this control system in the presence of a variable wind power in-feed is also examined. A Mathworks SimPowerSystems simulation is used to investigate the performance of the island management system. The benefit and requirements for energy storage, com-munications and distribution system protection for this application are considered.
Resumo:
The Biospheric Project is a nested multi-scalar urban agriculture project that aims to develop sustainable food systems in disadvantaged communities, though not only physical interventions, such as the urban masterplan and neighbourhood design to the building and its roof and façade, but also through social and commercial interventions, such as community involvement, businesses and a distribution system.
The project is focused around the Biospheric Foundation, a community interest company and research think-tank whose aim is to hasten our transition to a closed cycle, low-carbon economy. Its home is Irwell house, that houses a large-scale aquaponic-based food production system, which is directly linked to a whole-food shop (78 Steps, named after the distance from the productive system) and a whole food distribution system (the Whole Box). The building sits within a post-industrial landscape which is being developed into a new productive landscape, utilizing the the technologies developed by the Biospheric Foundation and Prof Greg Keeffe of Queens University Belfast. The collaboration links designer, academics and activists across the disciplines of Urban design, Architecture, Permaculture, landscape design, environmental science and business and community.
Resumo:
Traditional internal combustion engine vehicles are a major contributor to global greenhouse gas emissions and other air pollutants, such as particulate matter and nitrogen oxides. If the tail pipe point emissions could be managed centrally without reducing the commercial and personal user functionalities, then one of the most attractive solutions for achieving a significant reduction of emissions in the transport sector would be the mass deployment of electric vehicles. Though electric vehicle sales are still hindered by battery performance, cost and a few other technological bottlenecks, focused commercialisation and support from government policies are encouraging large scale electric vehicle adoptions. The mass proliferation of plug-in electric vehicles is likely to bring a significant additional electric load onto the grid creating a highly complex operational problem for power system operators. Electric vehicle batteries also have the ability to act as energy storage points on the distribution system. This double charge and storage impact of many uncontrollable small kW loads, as consumers will want maximum flexibility, on a distribution system which was originally not designed for such operations has the potential to be detrimental to grid balancing. Intelligent scheduling methods if established correctly could smoothly integrate electric vehicles onto the grid. Intelligent scheduling methods will help to avoid cycling of large combustion plants, using expensive fossil fuel peaking plant, match renewable generation to electric vehicle charging and not overload the distribution system causing a reduction in power quality. In this paper, a state-of-the-art review of scheduling methods to integrate plug-in electric vehicles are reviewed, examined and categorised based on their computational techniques. Thus, in addition to various existing approaches covering analytical scheduling, conventional optimisation methods (e.g. linear, non-linear mixed integer programming and dynamic programming), and game theory, meta-heuristic algorithms including genetic algorithm and particle swarm optimisation, are all comprehensively surveyed, offering a systematic reference for grid scheduling considering intelligent electric vehicle integration.
Resumo:
The future European power system will have a hierarchical structure created by layers of system control from a Supergrid via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the context of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called 'back-up generation' needed to support an 80% renewable energy portfolio in Europe by 2050. © 2013 IEEE.
Resumo:
This paper analyzes the behavior of a Voltage Source Converter Based HVDC system under DC cable fault conditions. The behavior of the HVDC system during a permanent line-to-earth fault is analyzed, outlining the systems configuration and behavior at each stage of the fault timeline. Operation of the proposed system under a single earthing configurations i.e. Converter (solid) earthed/AC transformer unearthed, was analyzed and simulated, with particular attention paid to the converters operation. It was observed that the development of potential earth loops within the system as a result of DC line- toearth faults leads to substantial overcurrent and results in system configuration oscillation.
Resumo:
We report the experimental reconstruction of the nonequilibrium work probability distribution in a closed quantum system, and the study of the corresponding quantum fluctuation relations. The experiment uses a liquid-state nuclear magnetic resonance platform that offers full control on the preparation and dynamics of the system. Our endeavors enable the characterization of the out-of-equilibrium dynamics of a quantum spin from a finite-time thermodynamics viewpoint.