35 resultados para Cross-relaxation process

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The position-dependent oxygen vacancy dynamics induced by a biased scanning probe microscopy tip in Samarium doped ceria thin films grown on MgO (100) substrates is investigated. The granularity of the samples gives rise to spatially dependent local electrochemical activity, as explored by electrochemical strain microscopy. The kinetics of the oxygen vacancy relaxation process is investigated separately for grain boundaries and grains. Higher oxygen vacancy concentration variation and slower diffusion are observed in the grain boundary regions as compared to the grains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conjugated polymers have attracted considerable attention in the last few decades due to their potential for optoelectronic applications. A key step that needs optimisation is charge carrier separation following photoexcitation. To understand better the dynamics of the exciton prior to charge separation, we have performed simulations of the formation and dynamics of localised excitations in single conjugated polymer strands. We use a nonadiabatic molecular dynamics method which allows for the coupled evolution of the nuclear degrees of freedom and of multiconfigurational electronic wavefunctions. We show the relaxation of electron-hole pairs to form excitons and oppositely charged polaron pairs and discuss the modifications to the relaxation process predicted by the inclusion of the Coulomb interaction between the carriers. The issue of charge photogeneration in conjugated polymers in dilute solution is also addressed. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3600404]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polypropylene sheets have been stretched at 160 °C to a state of large biaxial strain of extension ratio 3, and the stresses then allowed to relax at constant strain. The state of strain is reached via a path consisting of two sequential planar extensions, the second perpendicular to the first, under plane stress conditions with zero stress acting normal to the sheet. This strain path is highly relevant to solid phase deformation processes such as stretch blow moulding and thermoforming, and also reveals fundamental aspects of the flow rule required in the constitutive behaviour of the material. The rate of decay of stress is rapid, and such as to be highly significant in the modelling of processes that include stages of constant strain. A constitutive equation is developed that includes Eyring processes to model both the stress relaxation and strain rate dependence of the stress. The axial and transverse stresses observed during loading show that the use of a conventional Levy-Mises flow rule is ineffective, and instead a flow rule is used that takes account of the anisotropic state of the material via a power law function of the principal extension ratios. Finally the constitutive model is demonstrated to give quantitatively useful representation of the stresses both in loading and in stress relaxation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper points out a serious flaw in dynamic multivariate statistical process control (MSPC). The principal component analysis of a linear time series model that is employed to capture auto- and cross-correlation in recorded data may produce a considerable number of variables to be analysed. To give a dynamic representation of the data (based on variable correlation) and circumvent the production of a large time-series structure, a linear state space model is used here instead. The paper demonstrates that incorporating a state space model, the number of variables to be analysed dynamically can be considerably reduced, compared to conventional dynamic MSPC techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work in this paper is of particular significance since it considers the problem of modelling cross- and auto-correlation in statistical process monitoring. The presence of both types of correlation can lead to fault insensitivity or false alarms, although in published literature to date, only autocorrelation has been broadly considered. The proposed method, which uses a Kalman innovation model, effectively removes both correlations. The paper (and Part 2 [2]) has emerged from work supported by EPSRC grant GR/S84354/01 and is of direct relevance to problems in several application areas including chemical, electrical, and mechanical process monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transfer ionization process offers a unique opportunity to study radial and angular electron correlations in the helium atom. We report calculations for the multiple differential cross sections of the transfer ionization process p + He --> H + He++ + e(-). The results of these calculations demonstrate the strong sensitivity of the fully differential cross sections to fine details of electron correlation in the target atom. Specifically, angular electron correlation in the ground state of helium results in a broad peak in the electron emission spectra in the backward direction, relative to the incoming beam. Our model explains some of the key effects observed in measurements of multiple differential cross sections using the COLTRIMS technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A joint experimental and theoretical study of the transfer ionization process p+He→ H-0+He2++e(-) is presented for 630-keV proton impact energy, where the electron is detected in a plane perpendicular to the proton beam direction. With this choice of kinematics we find the triple-differential cross section to be particularly sensitive to angular correlation in the helium target. There is a good agreement between the experimental data and theoretical calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoionization cross-sections out of the fine-structure levels (2S(2)2p(4) P-3(2,0,1)) of the O-like Fe ion Fe XIX have been reinvestigated. Data for photoionization out of each of these finestructure levels have been obtained, where the calculations have been performed with and without the inclusion of radiation damping on the resonance structure in order to assess the importance of this process. Recombination rate coefficients are determined using the Milne relation, for the case of an electron recombining with N-like Fe ions (Fe XX) in the ground state to form O-like Fe (Fe XIX) existing in each of the fine- structure ground-state levels. Recombination rates are presented over a temperature range similar to 4.0 less than or equal to log T-e less than or equal to 7.0, of importance to the modelling of X-ray emission plasmas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brown's model for the relaxation of the magnetization of a single domain ferromagnetic particle is considered. This model results in the Fokker-Planck equation of the process. The solution of this equation in the cases of most interest is non- trivial. The probability density of orientations of the magnetization in the Fokker-Planck equation can be expanded in terms of an infinite set of eigenfunctions and their corresponding eigenvalues where these obey a Sturm-Liouville type equation. A variational principle is applied to the solution of this equation in the case of an axially symmetric potential. The first (non-zero) eigenvalue, corresponding to the largest time constant, is considered. From this we obtain two new results. Firstly, an approximate minimising trial function is obtained which allows calculation of a rigorous upper bound. Secondly, a new upper bound formula is derived based on the Euler-Lagrange condition. This leads to very accurate calculation of the eigenvalue but also, interestingly, from this, use of the simplest trial function yields an equivalent result to the correlation time of Coffey et at. and the integral relaxation time of Garanin. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of a room temperature molten salt to an external electric field when it is confined to a nanoslit is studied by molecular dynamics simulations. The fluid is confined between two parallel and oppositely charged walls, emulating two electrified solid-liquid interfaces. Attention is focused on structural, electrostatic, and dynamical properties, which are compared with those of the nonpolarized fluid. It is found that the relaxation of the electrostatic potential, after switching the electric field off, occurs in two stages. A first, subpicosecond process accounts for 80% of the decay and is followed by a second subdiffusive process with a time constant of 8 ps. Diffusion is not involved in the relaxation, which is mostly driven by small anion translations. The relaxation of the polarization in the confined system is discussed in terms of the spectrum of charge density fluctuations in the bulk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed investigation on the nature of the relaxation processes occurring in a typical room temperature ionic liquid (RTIL), namely, 1-butyl-3-methyl imidazolium hexafluorophosphate ([bmim][PF6]), is reported. The study was conducted using both elastic and inelastic neutron scattering over a wide temperature range from 10 to 400 K, accessing the dynamic features of both the liquid and glassy amorphous states. In this study, the inelastic fixed energy scan technique has been applied for the first time to this class of materials. Using this technique, the existence of two relaxation processes below the glass transition and a further diffusive process occurring above the glass-liquid transition are observed. The low temperature processes are associated with methyl group rotation and butyl chain relaxation in the glassy state and have been modeled in terms of two Debye-like, Arrhenius activated processes. The high temperature process has been modeled in terms of a Kohlraush-Williams-Watts relaxation, with a distinct Vogel-Fulcher-Tamman temperature dependence. These results provide novel information that will be useful in rationalizing the observed structural and dynamical behavior of RTILs in the amorphous state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Absolute measurements have been made of single-electron charge-exchange cross sections of H+, He+, and He2+ in H2O and CO2 in the energy range 0.3-7.5 keV amu(-1). Collisions of this type occur in the interaction of solar wind ions with cometary gases and have been observed by the Giotto spacecraft using the Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) during a close encounter with comet Halley in 1986. Increases in the He+ ion density, and in the He2+ to H+ density ratio were reported by Shelley et al, and Fuselier et al. and were explained by charge exchange. However, the lack of reliable cross sections for this process made interpretation of the data difficult. New cross sections are presented and discussed in relation to the Giotto observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results from complementary characterizations of the primary relaxation rate of a room temperature ionic liquid (RTIL), 1-hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl} imide, [C(6)mim][Tf2N], over a wide temperature range. This extensive data set is successfully merged with existing literature data for conductivity, viscosity, and NMR diffusion coefficients thus providing, for the case of RTILs, a unique description of the primary process relaxation map over more than 12 decades in relaxation rate and between 185 and 430 K. This unique data set allows a detailed characterization of the VTF parameters for the primary process, that are: B = 890 K, T-0 = 155.2 K, leading to a fragility index m = 71, corresponding to an intermediate fragility. For the first time neutron spin echo data from a fully deuteriated sample of RTIL at the two main interference peaks, Q = 0.76 and 1.4 angstrom(-1) are presented. At high temperature (T > 250 K), the collective structural relaxation rate follows the viscosity behavior; however at lower temperatures it deviates from the viscosity behavior, indicating the existence of a faster process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the process of low-energy electron capture by the SF(6) molecule. Our approach is based on the model of Gauyacq and Herzenberg [J. P. Gauyacq and A. Herzenberg, J. Phys. B 17, 1155 (1984)] in which the electron motion is coupled to the fully symmetric vibrational mode through a weakly bound or virtual s state. By tuning the two free parameters of the model, we achieve an accurate description of the measured electron attachment cross section and good agreement with vibrational excitation cross sections of the fully symmetric mode. An extension of the model provides a limit on the characteristic time of intramolecular vibrational relaxation in highly excited SF(6)(-). By evaluating the total vibrational spectrum density of SF(6)(-), we estimate the widths of the vibrational Feshbach resonances of the long-lived negative ion. We also analyze the possible distribution of the widths and its effect on the lifetime measurements, and investigate nonexponential decay features in metastable SF(6)(-).