11 resultados para Cathodic disbondment

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of cathodic protection in reinforced concrete is becoming increasingly common with such systems being installed on a number of structures throughout the United Kingdom and Ireland. However the prescribed design lives (or service life) of each cathodic protection system vary widely. The aim of this project was to assess the effectiveness of a sacrificial anode cathodic protection system and to predict its design life through a series of laboratory based experiments. The experimental plan involved casting a number of slabs which represented a common road bridge structure. The corrosion of the steel within the experimental slabs was then accelerated prior to installation of a cathodic protection system. During the experiment corrosion potential of the steel reinforcement was monitored using half-cell measurement. Additionally the current flow between the cathodic protection system and the steel reinforcement was recorded to assess the degree of protection. A combination of theoretical calculations and experimental results were then collated to determine the design life of this cathodic protection system. It can be concluded that this sacrificial anode based cathodic protection system was effective in halting the corrosion of steel reinforcement in the concrete slabs studied. Both the corrosion current and half-cell potentials indicated a change in passivity for the steel reinforcement once sacrificial anodes were introduced. The corrosion current was observed to be sensitive to the changes to the exposure environment. Based on the experimental variables studied the design life of this sacrificial anode can be taken as 26 to 30 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism of sulfur dioxide reduction at a platinum microelectrode was investigated by cyclic voltammetry in several room-temperature ionic liquids (RTILs)-[C(2)mim][NTf2], [C(4)mim][BF4], [C(4)mim][NO3], [C(4)mim][PF6], and [C(6)mim][Cl] where [C(2)mim] is 1-ethyl-3-methylimidazolium, [C(4)mim] is 1-butyl-3-methylimidazolium, [C(6)mim] is 1-hexyl-3-methylimidazolium, and [NTf2] is bis(trifluoromethylsufonyl)imide-with special attention paid to [C(4)mim][NO3] because of the well-defined voltammetry, high solubility, and relatively low diffusion coefficient of SO2 obtained in that ionic liquid. A cathodic peak is observed in all RTILs between -2.0 and -1.0 V versus a silver quasi-reference electrode. In [C(4)mim][NO3], the peak appears at -1.0 V, and potential step chronoamperometry was used to determine that SO2 has a very high solubility of 3100 (+/-450) mM and a diffusion coefficient of 5.0 (+/-0.8) x 10(-10) m(2) s(-1) in that ionic liquid. On the reverse wave, up to four anodic peaks are observed at ca. -0.4, -0.3, -0.2, and 0.2 V in [C(4)mim][NO3]. The cathodic wave is assigned to the reduction of SO2 to its radical anion, SO2-center dot. The peaks at -0.4 and -0.2 V are assigned to the oxidation of unsolvated and solvated SO2-center dot, respectively. The peak appearing at 0.2 V is assigned to the oxidation of either S2O42- or S2O4-center dot. The activation energy for the reduction of SO2 in [C(4)mim][NO3] was measured to be 10 (+/-2) kJ mol(-1) using chronoamperometric data at different temperatures. The stabilizing interaction of the solvent with the reduced species SO2-center dot leads to a different mechanism than that observed in conventional aprotic solvents. The high sensitivity of the system to SO2 also suggests that [C(4)mim][NO3] may be a viable solvent in gas sensing applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemistry of phenol and 4-tert-butyl-phenol is described in [C(2)mim][NTf2] and [C(4)mpyrr][NTf2] ionic liquids. Oxidation of phenol and phenolate is observed at E-p(a) = +1.64 and +0.24 V vs. Ag in both ionic liquids. On the cathodic sweep at a potential of -2.05 P 02 V vs. Ag under an oxygen atmosphere, the production of O-2(2-) dianions triggers the formation of phenolate anions which undergo chemical oxidation to the phenoxyl radical. The phenoxyl radical then reacts with the [NTf2](-) anion of the ionic liquid to form the corresponding phenyl triflate molecule. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electroanalytical quantification of chloride in [C(4)mim][BF4], [C(4)mim][NTf2] and [C(4)mim][PF6] ionic liquids has been explored using linear sweep and square wave voltammetry. Cathodic stripping voltammetry at a silver disk electrode is found to be the most sensitive. The methodology is based on first holding the potential of the electrode at +2.0 V (vs Ag wire), to accumulate silver chloride at the electrode. On applying a cathodic scan, a stripping wave is observed corresponding to the reduction of the silver chloride. This stripping protocol was found to detect ppb levels of chloride in [C(4)mim][BF4], [C(4)mim][NTf2], and [C(4)mim][PF6]. Although other methods for chloride have been reported for [BF4](-)- and [PF6](-)-based ionic liquids, no methods have been reported for [NTf2](-) ionic liquids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The determination of chloride impurities in water miscible and water immiscible ionic liquids has been explored using ion chromatography (IC) and cathodic stripping voltammetry (CSV). This paper shows the first quantification of chloride in [NTf2](-) based ILs. The parameters investigated include sample preparation, solvent effect, sample stability, and limit of quantification (LOQ).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cathodic and anodic: potential limit of eleven different ionic liquids were determined at a mercury hemisphere electrode. Ionic liquids containing the phosphonium cation (tri(n-hexyl)tetradecylphosphonium, [P-14.6,P-6.6](+)) give the largest potential window, especially When Coupled to a trifluorotris(pentafluoroethyl)- [FAP](-). or bis(trifluoromethanesulfonyl)imide, [NTf2](-), anion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of water content on room-temperature ionic liquids (RTILs) was studied by Karl Fischer titration and cyclic voltammetry in the following ionic liquids: tris(P-hexyl)tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P-14,P-6,P-6,P-6][NTf2], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide [C(4)mpyrr][NTf2], 1-hexyl-3-methylimidazolium tris(perfluoroethyl)trifluorophosphate [C(6)mim][FAP], 1-butyl3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(4)mim][NTf2], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(4)dmim][NTf2], N-hexyltriethylammonium bis(trifluoromethylsolfonyl)imide [N-6,N-2,N-2,N-2][NTf2], 1-butyl-3-methylirnidazolium hexafluorophosphate [C(4)mim][PF6], F6], 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(2)mim][NTf2], 1-butyl-3-methylimidazolium tetrafluoroborate [C(4)mim][BF4], 1-hexyl-3-methylimidazolium iodide [C(4)mim][I], 1-butyl-3-methylimidazolium trifluoromethylsulfonate [C(4)mim][OTf], and 1-hexyl-3-methylimidazolium chloride [C(6)mim][Cl]. In addition, electrochemically relevant properties such as viscosity, conductivity, density, and melting point of RTILs are summarized from previous literature and are discussed. Karl Fisher titrations were carried out to determine the water content of RTILs for vacuum-dried, atmospheric, and wet samples. The anion in particular was found to affect the level of water uptake. The hydrophobicity of the anions adhered to the following trend: [FAP](-) > [NTf2](-) > [PF6](-) > [BF4](-) > halides. Cyclic voltammetry shows that an increase in water content significantly narrows the electrochemical window of each ionic liquid. The electrochemical window decreases in the following order: vacuum-dried > atmospheric > wet at 298 K > 318 K > 338 K. The anodic and cathodic potentials vs ferrocene internal reference are also listed under vacuum-dried and atmospheric conditions. The data obtained may aid the selection of a RTIL for use as a solvent in electrochemical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electroreduction of CO32- ions on a molybdenum cathode in a NaCl-KCl-Li2CO3 melt was studied by cyclic voltarnmetry. The electrochemical synthesis of Mo2C on molybdenum substrates has been performed at It 23 K for 7 h with a cathodic current density of 5 mA cm(-2). If molybdenum carbide is present as a thin (ca. 500 nm) film on a molybdenum substrate (Mo2C/Mo), its catalytic activity in the water gas-shift reaction is enhanced by at least an order of magnitude compared to that of the bulk Mo2C phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of sodium surface species in the modification of a platinum (Pt) catalyst film supported on 8 mol% yttria-stabilised-zirconia (YSZ) was investigated under a flow of 20 kPa oxygen at 400 °C. Cyclic and linear sweep voltammetry were used to investigate the kinetics of the oxygen charge transfer reaction. The Pt/YSZ systems of both ‘clean’ and variable-coverage sodium-modified catalyst surfaces were also characterised using SEM, XPS and work function measurements using the Kelvin probe technique.

Samples with sodium coverage from 0.5 to 100% were used. It was found that sodium addition modifies the binding energy of oxygen onto the catalyst surface. Cyclic voltammetry experiments showed that higher overpotentials were required for oxygen reduction with increasing sodium coverage. In addition, sodium was found to modify oxygen storage and/or adsorption and diffusion increasing current densities at higher cathodic overpotential. Ex situ XPS measurements showed the presence of sodium hydroxide, carbonate and/or oxide species on the catalyst surface, while the Kelvin probe technique showed a decrease of approximately 250 meV in the work function of samples with more than 50% sodium coverage (compared to a nominally ‘clean’ sample).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bias dependent mechanisms of irreversible cathodic and anodic processes on a pure CeO2 film are studied using modified atomic force microscopy (AFM). For a moderate positive bias applied to the AFM tip an irreversible electrochemical reduction reaction is found, associated with significant local volume expansion. By changing the experimental conditions we are able to deduce the possible role of water in this process. Simultaneous detection of tip height and current allows the onset of conductivity and the electrochemical charge transfer process to be separated, further elucidating the reaction mechanism. The standard anodic/cathodic behavior is recovered in the high bias regime, where a sizable transport current flows between the tip and the film. These studies give insight into the mechanisms of the tip-induced electrochemical reactions as mediated by electronic currents, and into the role of water in these processes, as well as providing a different approach for electrochemical nano-writing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon films were energetically deposited onto copper and nickel foil using a filtered cathodic vacuum arc deposition system. Raman spectroscopy, scanning electron microscopy, transmission electron microscopy and UV–visible spectroscopy showed that graphene films of uniform thickness with up to 10 layers can be deposited onto copper foil at moderate temperatures of 750 C. The resulting films, which can be prepared at high deposition rates, were comparable to graphene films grown at 1050 C using chemical vapour deposition (CVD). This difference in growth temperature is attributed to dynamic annealing which occurs as the film grows from the energetic carbon flux. In the case of nickel substrates, it was found that graphene films can also be prepared at moderate substrate temperatures. However much higher carbon doses were required, indicating that the growth mode differs between substrates as observed in CVD grown graphene. The films deposited onto nickel were also highly non uniform in thickness, indicating that the grain structure of the nickel substrate influenced the growth of graphene layers.