10 resultados para Cardiac conduction system

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Mechanical overload of the heart is associated with excessive deposition of extracellular matrix proteins and the development of cardiac fibrosis. This can result in reduced ventricular compliance, diastolic dysfunction, and heart failure. Extracellular matrix synthesis is regulated primarily by cardiac fibroblasts, more specifically, the active myofibroblast. The influence of mechanical stretch on human cardiac fibroblasts' response to pro-fibrotic stimuli, such as transforming growth factor beta (TGFβ), is unknown as is the impact of stretch on B-type natriuretic peptide (BNP) and natriuretic peptide receptor A (NPRA) expression. BNP, acting via NPRA, has been shown to play a role in modulation of cardiac fibrosis.

METHODS AND RESULTS: The effect of cyclical mechanical stretch on TGFβ induction of myofibroblast differentiation in primary human cardiac fibroblasts and whether differences in response to stretch were associated with changes in the natriuretic peptide system were investigated. Cyclical mechanical stretch attenuated the effectiveness of TGFβ in inducing myofibroblast differentiation. This finding was associated with a novel observation that mechanical stretch can increase BNP and NPRA expression in human cardiac fibroblasts, which could have important implications in modulating myocardial fibrosis. Exogenous BNP treatment further reduced the potency of TGFβ on mechanically stretched fibroblasts.

CONCLUSION: We postulate that stretch induced up-regulation of the natriuretic peptide system may contribute to the observed reduction in myofibroblast differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nhlh1 is a basic helix-loop-helix transcription factor whose expression is restricted to the nervous system and which may play a role in neuronal differentiation. To directly study Nhlh1 function, we generated null mice. Homozygous mutant mice were predisposed to premature, adult-onset, unexpected death. Electrocardiograms revealed decreased total heart rate variability, stress-induced arrhythmia, and impaired baroreceptor sensitivity. This predisposition to arrhythmia is a likely cause of the observed death in the mutant mice. Heterozygosity for the closely related transcription factor Nhlh2 increased the severity of the Nhlh1-null phenotype. No signs of primary cardiac structural or conduction abnormalities could be detected upon necropsy of the null mice. The pattern of altered heart rhythm observed in basal and experimental conditions (stress and pharmacologically induced) suggests that a deficient parasympathetic tone may contribute to the arrhythmia in the Nhlh1-null mouse. The expression of Nhlh1 in the developing brain stem and in the vagal nuclei in the wild-type mouse further supports this hypothesis. The Nhlh1 mutant mouse may thus provide a model to investigate the contribution of the autonomic nervous system to arrhythmogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adrenomedullin (AM) and intermedin (IMD; adrenomedulln-2) are vasodilator peptides related to calcitonin gene-related peptide (CGRP). The actions of these peptides are mediated by the calcitonin receptor-like receptor (CLR) in association with one of three receptor activity-modifying proteins. CGRP is selective for CLR/receptor activity modifying protein (RAMP)1, AM for CLR/RAMP2 and -3, and IMD acts at both CGRP and AM receptors. In a model of pressure overload induced by inhibition of nitric-oxide synthase, up-regulation of AM was observed previously in cardiomyocytes demonstrating a hypertrophic phenotype. The current objective was to examine the effects of blood pressure reduction on cardiomyocyte expression of AM and IMD and their receptor components. Nomega-nitro-L-arginine methyl ester (L-NAME) (35 mg/kg/day) was administered to rats for 8 weeks, with or without concurrent administration of hydralazine (50 mg/kg/day) and hydrochlorothiazide (7.5 mg/kg/day). In left ventricular cardiomyocytes from L-NAME-treated rats, increases (-fold) in mRNA expression were 1.6 (preproAM), 8.4 (preproIMD), 3.4 (CLR), 4.1 (RAMP1), 2.8 (RAMP2), and 4.4 (RAMP3). Hydralazine/hydrochlorothiazide normalized systolic blood pressure (BP) and abolished mRNA up-regulation of hypertrophic markers sk-alpha-actin and BNP and of preproAM, CLR, RAMP2, and RAMP3 but did not normalize cardiomyocyte width nor preproIMD or RAMP1 mRNA expression. The robust increase in IMD expression indicates an important role for this peptide in the cardiac pathology of this model but, unlike AM, IMD is not associated with pressure overload upon the myocardium. The concordance of IMD and RAMP1 up-regulation indicates a CGRP-type receptor action; considering also a lack of response to BP reduction, IMD may, like CGRP, have an anti-ischemic function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that belong to the nuclear receptor superfamily. Three isoforms of PPAR have been identified, alpha, delta and gamma, which play distinct roles in the regulation of key metabolic processes, such as glucose and lipid redistribution. PPARalpha is expressed predominantly in the liver, kidney and heart, and is primarily involved in fatty acid oxidation. PPARgamma is mainly associated with adipose tissue, where it controls adipocyte differentiation and insulin sensitivity. PPARdelta is abundantly and ubiquitously expressed, but as yet its function has not been clearly defined. Activators of PPARalpha (fibrates) and gamma (thiazolidinediones) have been used clinically for a number of years in the treatment of hyperlipidaemia and to improve insulin sensitivity in diabetes. More recently, PPAR activation has been found to confer additional benefits on endothelial function, inflammation and thrombosis, suggesting that PPAR agonists may be good candidates for the treatment of cardiovascular disease. In this regard, it has been demonstrated that PPAR activators are capable of reducing blood pressure and attenuating the development of atherosclerosis and cardiac hypertrophy. This review will provide a detailed discussion of the current understanding of basic PPAR physiology, with particular reference to the cardiovascular system. It will also examine the evidence supporting the involvement of the different PPAR isoforms in cardiovascular disease and discuss the current and potential future clinical applications of PPAR activators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Valve and cardiac activity were simultaneously measured in the blue mussel (Mytilus edulis) in response to 10 d copper exposure. Valve movements, heart rates and heart-rate variability were obtained non-invasively using a Musselmonitor(R) (valve activity) and a modified version of the Computer-Aided Physiological Monitoring system (CAPMON; cardiac activity). After 2 d exposure of mussels (4 individuals per treatment group) to a range of dissolved copper concentrations (0 to 12.5 mu M as CuCl2) median valve positions (% open) and median heart rates (beats per minute) declined as a function of copper concentration. Heart-rate variability (coefficient of variation for interpulse durations) rose in a concentration-dependent manner. The 48 h EC50 values (concentrations of copper causing 50% change) for valve positions, heart rates and heart-rate variability were 2.1, 0.8, and 0.06 mu M, respectively. Valve activity was weakly correlated with both heart rate (r = 0.48 +/- 0.02) and heart-rate variability (r = 0.32 +/- 0.06) for control individuals (0 mu M Cu2+). This resulted from a number of short enclosure events that did not coincide with a change in cardiac activity. Exposure of mussels to increasing copper concentrations (greater than or equal to 0.8 mu M) progressively reduced the correlation between valve activity and heart rates (r = 0 for individuals dosed with greater than or equal to 6.3 mu M Cu2+), while correlations between valve activity and heart-rate variability were unaffected. The poor correlations resulted from periods of valve flapping that were not mimicked by similar fluctuations in heart rate or heart-rate variability. The data suggest that the copper-induced bradycardia observed in mussels is not a consequence of prolonged valve closure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Automated Interpulse Duration Assessment system (AIDA) is described which permits detection of irregularities in cardiac rhythms in selected invertebrates. The sensitivity of AIDA was demonstrated by its ability to detect handling stress in mussels (Mytilus edulis) that was not evident when measuring heart rate alone. Changes in cardiac activity patterns of crabs (Carcinus maenas) held in the laboratory for up to 10 wk was also examined using the new technique. The frequency distribution of interpulse duration changed significantly as the nutritional state changed. Potential applications of the AIDA system are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To assess the impedance cardiogram recorded by an automated external defibrillator during cardiac arrest to facilitate emergency care by lay persons. Lay persons are poor at emergency pulse checks (sensitivity 84%, specificity 36%); guidelines recommend they should not be performed. The impedance cardiogram (dZ/dt) is used to indicate stroke volume. Can an impedance cardiogram algorithm in a defibrillator determine rapidly circulatory arrest and facilitate prompt initiation of external cardiac massage?

DESIGN: Clinical study.

SETTING: University hospital.

PATIENTS: Phase 1 patients attended for myocardial perfusion imaging. Phase 2 patients were recruited during cardiac arrest. This group included nonarrest controls.

INTERVENTIONS: The impedance cardiogram was recorded through defibrillator/electrocardiographic pads oriented in the standard cardiac arrest position.

MEASUREMENTS AND MAIN RESULTS: Phase 1: Stroke volumes from gated myocardial perfusion imaging scans were correlated with parameters from the impedance cardiogram system (dZ/dt(max) and the peak amplitude of the Fast Fourier Transform of dZ/dt between 1.5 Hz and 4.5 Hz). Multivariate analysis was performed to fit stroke volumes from gated myocardial perfusion imaging scans with linear and quadratic terms for dZ/dt(max) and the Fast Fourier Transform to identify significant parameters for incorporation into a cardiac arrest diagnostic algorithm. The square of the peak amplitude of the Fast Fourier Transform of dZ/dt was the best predictor of reduction in stroke volumes from gated myocardial perfusion imaging scans (range = 33-85 mL; p = .016). Having established that the two pad impedance cardiogram system could detect differences in stroke volumes from gated myocardial perfusion imaging scans, we assessed its performance in diagnosing cardiac arrest. Phase 2: The impedance cardiogram was recorded in 132 "cardiac arrest" patients (53 training, 79 validation) and 97 controls (47 training, 50 validation): the diagnostic algorithm indicated cardiac arrest with sensitivities and specificities (+/- exact 95% confidence intervals) of 89.1% (85.4-92.1) and 99.6% (99.4-99.7; training) and 81.1% (77.6-84.3) and 97% (96.7-97.4; validation).

CONCLUSIONS: The impedance cardiogram algorithm is a significant marker of circulatory collapse. Automated defibrillators with an integrated impedance cardiogram could improve emergency care by lay persons, enabling rapid and appropriate initiation of external cardiac massage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Laypersons are poor at emergency pulse checks (sensitivity 84%, specificity 36%). Guidelines indicate that pulse checks should not be performed. The impedance cardiogram (dZ/dt) is used to assess stroke volume. Can a novel defibrillator-based impedance cardiogram system be used to distinguish between circulatory arrest and other collapse states?

DESIGN: Animal study.

SETTING: University research laboratory.

SUBJECTS: Twenty anesthetized, mechanically ventilated pigs, weight 50-55 kg.

INTERVENTIONS: Stroke volume was altered by right ventricular pacing (160, 210, 260, and 305 beats/min). Cardiac arrest states were then induced: ventricular fibrillation (by rapid ventricular pacing) and, after successful defibrillation, pulseless electrical activity and asystole (by high-dose intravenous pentobarbitone).

MEASUREMENTS AND MAIN RESULTS: The impedance cardiogram was recorded through electrocardiogram/defibrillator pads in standard cardiac arrest positions. Simultaneously recorded electro- and impedance cardiogram (dZ/dt) along with arterial blood pressure tracings were digitized during each pacing and cardiac arrest protocol. Five-second epochs were analyzed for sinus rhythm (20 before ventricular fibrillation, 20 after successful defibrillation), ventricular fibrillation (40), pulseless electrical activity (20), and asystole (20), in two sets of ten pigs (ten training, ten validation). Standard impedance cardiogram variables were noncontributory in cardiac arrest, so the fast Fourier transform of dZ/dt was assessed. During ventricular pacing, the peak amplitude of fast Fourier transform of dZ/dt (between 1.5 and 4.5 Hz) correlated with stroke volume (r2 = .3, p < .001). In cardiac arrest, a peak amplitude of fast Fourier transform of dZ/dt of < or = 4 dB x ohm x rms indicated no output with high sensitivity (94% training set, 86% validation set) and specificity (98% training set, 90% validation set).

CONCLUSIONS: As a powerful clinical marker of circulatory collapse, the fast Fourier transformation of dZ/dt (impedance cardiogram) has the potential to improve emergency care by laypersons using automated defibrillators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large body of empirical research shows that psychosocial risk factors (PSRFs) such as low socio-economic status, social isolation, stress, type-D personality, depression and anxiety increase the risk of incident coronary heart disease (CHD) and also contribute to poorer health-related quality of life (HRQoL) and prognosis in patients with established CHD. PSRFs may also act as barriers to lifestyle changes and treatment adherence and may moderate the effects of cardiac rehabilitation (CR). Furthermore, there appears to be a bidirectional interaction between PSRFs and the cardiovascular system. Stress, anxiety and depression affect the cardiovascular system through immune, neuroendocrine and behavioural pathways. In turn, CHD and its associated treatments may lead to distress in patients, including anxiety and depression. In clinical practice, PSRFs can be assessed with single-item screening questions, standardised questionnaires, or structured clinical interviews. Psychotherapy and medication can be considered to alleviate any PSRF-related symptoms and to enhance HRQoL, but the evidence for a definite beneficial effect on cardiac endpoints is inconclusive. A multimodal behavioural intervention, integrating counselling for PSRFs and coping with illness should be included within comprehensive CR. Patients with clinically significant symptoms of distress should be referred for psychological counselling or psychologically focused interventions and/or psychopharmacological treatment. To conclude, the success of CR may critically depend on the interdependence of the body and mind and this interaction needs to be reflected through the assessment and management of PSRFs in line with robust scientific evidence, by trained staff, integrated within the core CR team.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combined conduction–convection–radiation heat transfer is investigated numerically in a micro-channel filled with a saturated cellular porous medium, with the channel walls held at a constant heat flux. Invoking the velocity slip and temperature jump, the thermal behaviour of the porous–fluid system are studied by considering hydrodynamically fully developed flow and applying the Darcy–Brinkman flow model. One energy equation model based on the local thermal equilibrium condition is adopted to evaluate the temperature field within the porous medium. Combined conduction and radiation heat transfer is treated as an effective conduction process with a temperature-dependent effective thermal conductivity. Results are reported in terms of the average Nusselt number and dimensionless temperature distribution, as a function of velocity slip coefficient, temperature jump coefficient, porous medium shape parameter and radiation parameters. Results show that increasing the radiation parameter (Tr)(Tr) and the temperature jump coefficient flattens the dimensionless temperature profile. The Nusselt numbers are more sensitive to the variation in the temperature jump coefficient rather than to the velocity slip coefficient. Such that for high porous medium shape parameter, the Nusselt number is found to be independent of velocity slip. Furthermore, it is found that as the temperature jump coefficient increases, the Nusselt number decrease. In addition, for high temperature jump coefficients, the Nusselt number is found to be insensitive to the radiation parameters and porous medium shape parameter. It is also concluded that compared with the conventional macro-channels, wherein using a porous material enhances the rate of heat transfer (up to about 40 % compared to the clear channel), insertion of a porous material inside a micro-channel in slip regime does not effectively enhance the rate of heat transfer that is about 2 %.