7 resultados para CRYPTOSYSTEMS
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
New FPGA architectures for the ordinary Montgomery multiplication algorithm and the FIOS modular multiplication algorithm are presented. The embedded 18×18-bit multipliers and fast carry look-ahead logic located on the Xilinx Virtex2 Pro family of FPGAs are used to perform the ordinary multiplications and additions/subtractions required by these two algorithms. The architectures are developed for use in Elliptic Curve Cryptosystems over GF(p), which require modular field multiplication to perform elliptic curve point addition and doubling. Field sizes of 128-bits and 256-bits are chosen but other field sizes can easily be accommodated, by rapidly reprogramming the FPGA. Overall, the larger the word size of the multiplier, the more efficiently it performs in terms of area/time product. Also, the FIOS algorithm is flexible in that one can tailor the multiplier architecture is to be area efficient, time efficient or a mixture of both by choosing a particular word size. It is estimated that the computation of a 256-bit scalar point multiplication over GF(p) would take about 4.8 ms.
Resumo:
A novel hardware architecture for elliptic curve cryptography (ECC) over GF(p) is introduced. This can perform the main prime field arithmetic functions needed in these cryptosystems including modular inversion and multiplication. This is based on a new unified modular inversion algorithm that offers considerable improvement over previous ECC techniques that use Fermat's Little Theorem for this operation. The processor described uses a full-word multiplier which requires much fewer clock cycles than previous methods, while still maintaining a competitive critical path delay. The benefits of the approach have been demonstrated by utilizing these techniques to create a field-programmable gate array (FPGA) design. This can perform a 256-bit prime field scalar point multiplication in 3.86 ms, the fastest FPGA time reported to date. The ECC architecture described can also perform four different types of modular inversion, making it suitable for use in many different ECC applications. © 2006 IEEE.
Resumo:
The overall aim of the work presented in this paper has been to develop Montgomery modular multiplication architectures suitable for implementation on modern reconfigurable hardware. Accordingly, novel high-radix systolic array Montgomery multiplier designs are presented, as we believe that the inherent regular structure and absence of global interconnect associated with these, make them well-suited for implementation on modern FPGAs. Unlike previous approaches, each processing element (PE) comprises both an adder and a multiplier. The inclusion of a multiplier in the PE means that the need to pre-compute or store any multiples of the operands is avoided. This also allows very high-radix implementations to be realised, further reducing the amount of clock cycles per modular multiplication, while still maintaining a competitive critical delay. For demonstrative purposes, 512-bit and 1024-bit FPGA implementations using radices of 2(8) and 2(16) are presented. The subsequent throughput rates are the fastest reported to date.
Resumo:
In the last decade, many side channel attacks have been published in academic literature detailing how to efficiently extract secret keys by mounting various attacks, such as differential or correlation power analysis, on cryptosystems. Among the most efficient and widely utilized leakage models involved in these attacks are the Hamming weight and distance models which give a simple, yet effective, approximation of the power consumption for many real-world systems. These leakage models reflect the number of bits switching, which is assumed proportional to the power consumption. However, the actual power consumption changing in the circuits is unlikely to be directly of that form. We, therefore, propose a non-linear leakage model by mapping the existing leakage model via a transform function, by which the changing power consumption is depicted more precisely, hence the attack efficiency can be improved considerably. This has the advantage of utilising a non-linear power model while retaining the simplicity of the Hamming weight or distance models. A modified attack architecture is then suggested to yield the correct key efficiently in practice. Finally, an empirical comparison of the attack results is presented.
Resumo:
Lattice-based cryptography has gained credence recently as a replacement for current public-key cryptosystems, due to its quantum-resilience, versatility, and relatively low key sizes. To date, encryption based on the learning with errors (LWE) problem has only been investigated from an ideal lattice standpoint, due to its computation and size efficiencies. However, a thorough investigation of standard lattices in practice has yet to be considered. Standard lattices may be preferred to ideal lattices due to their stronger security assumptions and less restrictive parameter selection process. In this paper, an area-optimised hardware architecture of a standard lattice-based cryptographic scheme is proposed. The design is implemented on a FPGA and it is found that both encryption and decryption fit comfortably on a Spartan-6 FPGA. This is the first hardware architecture for standard lattice-based cryptography reported in the literature to date, and thus is a benchmark for future implementations.
Additionally, a revised discrete Gaussian sampler is proposed which is the fastest of its type to date, and also is the first to investigate the cost savings of implementing with lamda_2-bits of precision. Performance results are promising in comparison to the hardware designs of the equivalent ring-LWE scheme, which in addition to providing a stronger security proof; generate 1272 encryptions per second and 4395 decryptions per second.
Resumo:
As the development of a viable quantum computer nears, existing widely used public-key cryptosystems, such as RSA, will no longer be secure. Thus, significant effort is being invested into post-quantum cryptography (PQC). Lattice-based cryptography (LBC) is one such promising area of PQC, which offers versatile, efficient, and high performance security services. However, the vulnerabilities of these implementations against side-channel attacks (SCA) remain significantly understudied. Most, if not all, lattice-based cryptosystems require noise samples generated from a discrete Gaussian distribution, and a successful timing analysis attack can render the whole cryptosystem broken, making the discrete Gaussian sampler the most vulnerable module to SCA. This research proposes countermeasures against timing information leakage with FPGA-based designs of the CDT-based discrete Gaussian samplers with constant response time, targeting encryption and signature scheme parameters. The proposed designs are compared against the state-of-the-art and are shown to significantly outperform existing implementations. For encryption, the proposed sampler is 9x faster in comparison to the only other existing time-independent CDT sampler design. For signatures, the first time-independent CDT sampler in hardware is proposed.