106 resultados para CHEMORECEPTOR INPUTS
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The success postulate in belief revision ensures that new evidence (input) is always trusted. However, admitting uncertain input has been questioned by many researchers. Darwiche and Pearl argued that strengths of evidence should be introduced to determine the outcome of belief change, and provided a preliminary definition towards this thought. In this paper, we start with Darwiche and Pearl’s idea aiming to develop a framework that can capture the influence of the strengths of inputs with some rational assumptions. To achieve this, we first define epistemic states to represent beliefs attached with strength, and then present a set of postulates to describe the change process on epistemic states that is determined by the strengths of input and establish representation theorems to characterize these postulates. As a result, we obtain a unique rewarding operator which is proved to be a merging operator that is in line with many other works. We also investigate existing postulates on belief merging and compare them with our postulates. In addition, we show that from an epistemic state, a corresponding ordinal conditional function by Spohn can be derived and the result of combining two epistemic states is thus reduced to the result of combining two corresponding ordinal conditional functions proposed by Laverny and Lang. Furthermore, when reduced to the belief revision situation, we prove that our results induce all the Darwiche and Pearl’s postulates as well as the Recalcitrance postulate and the Independence postulate.
Resumo:
AND logic gate behaviour can be recognized in chemical-responsive luminescence phenomena concerning small molecules. Though initial developments concerned separate and distinguishable chemical species as inputs, consideration of other types of input sets allows substantial expansion of the sub-field. Dissection of these molecular devices into modules, where possible, enables analysis of their logic behaviour according to supramolecular photochemical mechanisms.
Resumo:
Revising its beliefs when receiving new information is an important ability of any intelligent system. However, in realistic settings the new input is not always certain. A compelling way of dealing with uncertain input in an agent-based setting is to treat it as unreliable input, which may strengthen or weaken the beliefs of the agent. Recent work focused on the postulates associated with this form of belief change and on finding semantical operators that satisfy these postulates. In this paper we propose a new syntactic approach for this form of belief change and show that it agrees with the semantical definition. This makes it feasible to develop complex agent systems capable of efficiently dealing with unreliable input in a semantically meaningful way. Additionally, we show that imposing restrictions on the input and the beliefs that are entailed allows us to devise a tractable approach suitable for resource-bounded agents or agents where reactiveness is of paramount importance.
Resumo:
An increasing number of empirical studies are challenging the central fundamentals on which the classical soil food web model is built. This model assumes that bacteria consume labile substrates twice as fast as fungi, and that mycorrhizal fungi do not decompose organic matter. Here, we build on emerging evidence that points to significant consumption of labile C by fungi, and to the ability of ectomycorrhizal fungi to decompose organic matter, to show that labile C constitutes a major and presently underrated source of C for the soil food web. We use a simple model describing the dynamics of a recalcitrant and a labile C pool and their consumption by fungi and bacteria to show that fungal and bacterial populations can coexist in a stable state with large inputs into the labile C pool and a high fungal use of labile C. We propose a new conceptual model for the bottom trophic level of the soil food web, with organic C consisting of a continuous pool rather than two or three distinct pools, and saprotrophic fungi using substantial amounts of labile C. Incorporation of these concepts will increase our understanding of soil food web dynamics and functioning under changing conditions.
Resumo:
Models and software products have been developed for modelling, simulation and prediction of different correlations in materials science, including 1. the correlation between processing parameters and properties in titanium alloys and ?-titanium aluminides; 2. time–temperature–transformation (TTT) diagrams for titanium alloys; 3. corrosion resistance of titanium alloys; 4. surface hardness and microhardness profile of nitrocarburised layers; 5. fatigue stress life (S–N) diagrams for Ti–6Al–4V alloys. The programs are based on trained artificial neural networks. For each particular case appropriate combination of inputs and outputs is chosen. Very good performances of the models are achieved. Graphical user interfaces (GUI) are created for easy use of the models. In addition interactive text versions are developed. The models designed are combined and integrated in software package that is built up on a modular fashion. The software products are available in versions for different platforms including Windows 95/98/2000/NT, UNIX and Apple Macintosh. Description of the software products is given, to demonstrate that they are convenient and powerful tools for practical applications in solving various problems in materials science. Examples for optimisation of the alloy compositions, processing parameters and working conditions are illustrated. An option for use of the software in materials selection procedure is described.
Resumo:
In this paper NOx emissions modelling for real-time operation and control of a 200 MWe coal-fired power generation plant is studied. Three model types are compared. For the first model the fundamentals governing the NOx formation mechanisms and a system identification technique are used to develop a grey-box model. Then a linear AutoRegressive model with eXogenous inputs (ARX) model and a non-linear ARX model (NARX) are built. Operation plant data is used for modelling and validation. Model cross-validation tests show that the developed grey-box model is able to consistently produce better overall long-term prediction performance than the other two models.
Resumo:
Integrated "ICT chromophore-receptor" systems show ion-induced shifts in their electronic absorption spectra. The wavelength of observation can be used to reversibly configure the system to any of the four logic operations permissible with a single input (YES, NOT, PASS 1, PASS 0), under conditions of ion input and transmittance output. We demonstrate these with dyes integrated into Tsien's calcium receptor, 1-2. Applying multiple ion inputs to 1-2 also allows us to perform two- or three-input OR or NOR operations. The weak fluorescence output of 1 also shows YES or NOT logic depending on how it is configured by excitation and emission wavelengths. Integrated "receptor(1)-ICT chromophore-receptor(2)" systems 3-5 selectively target two ions into the receptor terminals. The ion-induced transmittance output of 3-5 can also be configured via wavelength to illustrate several logic types including, most importantly, XOR. The opposite effects of the two ions on the energy of the chromophore excited state is responsible for this behaviour. INHIBIT and REVERSE IMPLICATION are two of the other logic types seen here. Integration of XOR logic with a preceding OR operation can be arranged by using three ion inputs. The fluorescence output of these systems can be configured via wavelength to display INHIBIT or NOR logic under two-input conditions. The superposition or multiplicity of logic gate configurations is an unusual consequence of the ability to simultaneously observe multiple wavelengths.