9 resultados para Brassica napus var. napus
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The recent growth in bioenergy crop cultivation, stimulated by the need to implement measures to reduce net CO emissions, is driving major land-use changes with consequences for biodiversity and ecosystem service provision. Although the type of bioenergy crop and its associated management is likely to affect biodiversity at the local (field) scale, landscape context and its interaction with crop type may also influence biodiversity on farms. In this study, we assessed the impact of replacing conventional agricultural crops with two model bioenergy crops (either oilseed rape Brassica napus or Miscanthus × giganteus) on vascular plant, bumblebee, solitary bee, hoverfly and carabid beetle richness, diversity and abundance in 50 sites in Ireland. We assessed whether within-field biodiversity was also related to surrounding landscape structure. We found that local- and landscape-scale variables correlated with biodiversity in these agricultural landscapes. Overall, the differences between the bioenergy crops and the conventional crops on farmland biodiversity were mostly positive (e.g. higher vascular plant richness in Miscanthus planted on former conventional tillage, higher solitary bee abundance and richness in Miscanthus and oilseed rape compared with conventional crops) or neutral (e.g. no differences between crop types for hoverflies and bumblebees). We showed that these crop type effects were independent of (i.e. no interactions with) the surrounding landscape composition and configuration. However, surrounding landscape context did relate to biodiversity in these farms, negatively for carabid beetles and positively for hoverflies. Although we conclude that the bioenergy crops compared favourably with conventional crops in terms of biodiversity of the taxa studied at the field scale, the effects of large-scale planting in these landscapes could result in very different impacts. Maintaining ecosystem functioning and the delivery of ecosystem services will require a greater understanding of impacts at the landscape scale to ensure the sustainable development of climate change mitigation measures.
Resumo:
The coconut variety Typica, form typica, commonly known as Sri Lanka tall coconuts is the most widely exploited and grown variety in Sri Lanka. Under the coconut bio-diversity conservation programme, several Typica populations have been collected by island-wide surveys and planted ex situ. Thirty-three coconut populations were subjected to microsatellite assay with eight coconut-specific microsatellite primer pairs in order to study the levels and distribution of genetic variation of the collected materials for formulating future collection strategies and selecting parents for the breeding programme. A total of 56 alleles were detected ranging from 3 to 10 alleles per primer pair with an average of 7 alleles per locus. Overall a very high level of genetic diversity was detected (0.999) for all the populations studied ranging from 0.526 for population Debarayaya to 0.683 for population Dickwella. Only four introduced coconut populations, i.e. Clovis, Margeret, Dickwella, Mirishena and an embryo-cultured population were clearly separated from the resulting dendrogram. A very high level of within population variation (99%) accounted for native populations suggests a common history and a restricted genetic base for native Sri Lankan tall coconuts. Categorization of alleles into different classes according to their frequency and distribution confirmed the results of the dedrogram and concluded the adequacy of single large collection from the entire target area to represent the total genetic diversity in Sri Lanka. This study discusses useful information regarding conservation and breeding of coconut in Sri Lanka.
Resumo:
Isatis capadocica, a brassica collected from Iranian arsenic-contaminated mine spoils and control populations, was examined to determine arsenate tolerance, metabolism and accumulation. I. cappadocica exhibited arsenate hypertolerance in both mine and nonmine populations, actively growing at concentrations of > 1 mm arsenate in hydroponic solution. I. cappadocica had an ability to accumulate high concentrations of arsenic in its shoots, in excess of 100 mg kg(-1) DW, with a shoot : root transfer ratio of > 1. The ability to accumulate arsenic was exhibited in both hydroponics and contaminated soils. Tolerance in this species was not achieved through suppression of high-affinity phosphate/arsenate root transport, in contrast to other monocotyledons and dicotyledons. A high percentage (> 50%) of arsenic in the tissues was phytochelatin complexed; however, it is argued that this is a constitutive, rather than an adaptive, mechanism of tolerance.
Resumo:
Patensin, a new triterpenoid glycoside, was isolated from the ethanolic extraction of the roots of Pulsatilla patens var. multifida. Its structure was established as hederagenin 3-O-beta-D-galactopyranosyl-(1-->2)-beta-D-glucopyranoside on the basis of hydrolysis and spectral evidence including 1D and 2D NMR techniques.
Resumo:
This study was conducted to explore the effect of different autoclave heating times (30, 60 and 90 min) on fatty acids supply and molecular stability in Brassica carinata seed. Multivariate spectral analyses and correlation analyses were also carried out in our study. The results showed that autoclaving treatments significantly decreased the total fatty acids content in a linear fashion in B. carinata seed as heating time increased. Reduced concentrations were also observed in C18:3n3, C20:1, C22:1n9, monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), omega 3 (ω-3) and 9 (ω-9) fatty acids. Correspondingly, the heated seeds showed dramatic reductions in all the peak intensities within lipid-related spectral regions. Results from agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA) indicated that the raw oilseed had completely different structural make-up from the autoclaved seeds in both CH3 and CH2 asymmetric and symmetric stretching region (ca. 2999–2800 cm−1) and lipid ester Cdouble bond; length as m-dashO carbonyl region (ca. 1787–1706 cm−1). However, the oilseeds heated for 30, 60 and 90 min were not grouped into separate classes or ellipses in all the lipid-related regions, indicating that there still exhibited similarities in lipid biopolymer conformations among autoclaved B. carinata seeds. Moreover, strong correlations between spectral information and fatty acid compositions observed in our study could imply that lipid-related spectral parameters might have a potential to predict some fatty acids content in oilseed samples, i.e. B. carinata. However, more data from large sample size and diverse range would be necessary and helpful to draw up a final conclusion.