33 resultados para Biomechanical phenomena

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reproducible modulations in low-pressure, inductively coupled discharges operating in chlorine and argon-chlorine mixtures have been observed and studied. Changes in the light output, floating potential, negative ion fraction, and charged particle densities were observed. Here we report two types of unstable operational modes in an inductively coupled discharge. On the one hand, when the discharge was matched, to minimize reflected power, instabilities were observed in argon-chlorine plasmas over limited operating conditions of input power and gas pressure. The instability window decreased with increasing chlorine content and was observed for chlorine concentrations between 30% and 60% only. However, when operating at pressures below 5 mTorr and the discharge circuit detuned to increase the reflected power, modulations were observed in a pure chlorine discharge. These modulations varied in nature from a series of sharp bursts to a very periodic behavior and can be controlled, by variation of the matching conditions, to produce an apparent pulsed plasma environment. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes of the electron dynamics during the mode transition (E- to H-mode) in a hydrogen radio-frequency (rf) inductively coupled plasma are investigated using space and phase resolved optical emission spectroscopy. The E- mode is characterized through relatively weak optical emission which is strongly modulated on a nanosecond time scale during the rf-cycle, with one pronounced maximum per cycle. The modulation in H-mode, with twice the rf-frequency, is significantly weaker while the emission intensities are about two orders of magnitude higher. In particular the transition between these two modes is studied under variations of rf-power input and gas pressure. Characteristic spatio-temporal structures are observed and can be understood in the frame of a simple model combining both coupling mechanisms in the transition regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How the CNS deals with the issue of motor redundancy remains a central question for motor control research. Here we investigate the means by which neuromuscular and biomechanical factors interact to resolve motor redundancy in rhythmic multijoint arm movements. We used a two-df motorised robot arm to manipulate the dynamics of rhythmic flexion-extension (FE) and supination-pronation (SP) movements at the elbow-joint complex. Participants were required to produce rhythmic FE and SP movements, either in isolation, or in combination (at the phase relationship of their choice), while we recorded the activity of key bi-functional muscles. When performed in combination, most participants spontaneously produced an in-phase pattern of coordination in which flexion is synchronised with supination. The activity of the Biceps Brachii (BB), the strongest arm muscle which also has the largest moment arms in both flexion and supination was significantly higher for FE and SP performed in combination than in isolation, suggesting optimal exploitation of the mechanical advantage of this muscle. In a separate condition, participants were required to produce a rhythmic SP movement while a rhythmic FE movement was imposed by the motorised robot. Simulations based upon a musculoskeletal model of the arm demonstrated that in this context, the most efficient use of the force-velocity relationship of BB requires that an anti-phase pattern of coordination (flexion synchronized with pronation) be produced. In practice, the participants maintained the in-phase behavior, and BB activity was higher than for SP performed in isolation. This finding suggests that the neural organisation underlying the exploitation of bifunctional muscle properties, in the natural context, constrains the system to maintain the

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties and characteristics of a recently proposed anisotropic metamaterial based upon layered arrays of tightly coupled pairs of "dogbone" shaped stripe conductors have been explored in detail. It has been found that a metamaterial composed of such stacked layers exhibits artificial magnetism and may support backward wave propagation. The equivalent network models of the constitutive conductor pairs arranged in the periodic array have been devised and applied to the identification of the specific types of resonances, and to the analysis of their contribution into the effective dielectric and magnetic properties of the artificial medium. The proposed "dogbone" configuration of conductor pairs has the advantage of being entirely realizable and assemblable in planar technology. It also appears more prospective than simple cut-wire or metal-plate pairs because the additional geometrical parameters provide an efficient control of separation between the electric and magnetic resonances that, in turn, makes it possible to obtain a fairly broadband left-handed behaviour of the structure at low frequencies.

Relevância:

20.00% 20.00%

Publicador: