9 resultados para Atmospheric Co2

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sequestration of CO2 via biological sinks is a matter of great scientific importance due to the potential lowering of atmospheric CO2. In this study, a custom built incubation chamber was used to cultivate a soil microbial community to instigate chemoautotrophy of a temperate soil. Real-time atmospheric CO2 concentrations were monitored and estimations of total CO2 uptake were made. After careful background flux corrections, 4.52 +/- 0.05 g CO2 kg I dry soil was sequestered from the chamber atmosphere over 40 h. Using isotopically labelled (CO2)-C-13 and GCMS-IRMS, labelled fatty acids were identified after only a short incubation, hence confirming CO2 sequestration for soil. The results of this in vivo study provide the ground work for future studies intending to mimic the in situ environment by providing a reliable method for investigating CO2 uptake by soil microorganisms.(C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accurate chronologies are essential for linking palaeoclimate archives. Carbon-14 wiggle-match dating was used to produce an accurate chronology for part of an early Holocene peat sequence from the Borchert (The Netherlands). Following the Younger Dryas-Preboreal transition, two climatic shifts could be inferred. Around 11 400 cal. yr BP the expansion of birch (Betula) forest was interrupted by a dry continental phase with dominantly open grassland vegetation, coeval with the PBO (Preboreal Oscillation), as observed in the GRIP ice core. At 11 250 cal. yr BP a sudden shift to a humid climate occurred. This second change appears to be contemporaneous with: (i) a sharp increase of atmospheric C-14; (ii) a temporary decline of atmospheric CO2; and (iii) an increase in the GRIP Be-10 flux. The close correspondence with excursions of cosmogenic nuclides points to a decline in solar activity, which may have forced the changes in climate and vegetation at around 11 250 cal. yr BP. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

How do the predicted climatic changes (IPCC, 2007) for the next century compare in magnitude and rate to those that Earth has previously encountered? Are there comparable intervals of rapid rates of temperature change, sea-level rise and levels of atmospheric CO2 that can be used as analogues to assess possible biotic responses to future change? Or are we stepping into the great unknown? This perspective article focuses on intervals in time in the fossil record when atmospheric CO2 concentrations increased up to 1200 ppmv, temperatures in mid- to high-latitudes increased by greater than 4 ?C within 60 years, and sea levels rose by up to 3 m higher than present. For these intervals in time, case studies of past biotic responses are presented to demonstrate the scale and impact of the magnitude and rate of such climate changes on biodiversity. We argue that although the underlying mechanisms responsible for these past changes in climate were very different (i.e. natural processes rather than anthropogenic), the rates and magnitude of climate change are similar to those predicted for the future and therefore potentially relevant to understanding future biotic response. What emerges from these past records is evidence for rapid community turnover, migrations, development of novel ecosystems and thresholds from one stable ecosystem state to another, but there is very little evidence for broad-scale extinctions due to a warming world. Based on this evidence from the fossil record, we make four recommendations for future climate-change integrated conservation strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Just before the onset of the Younger Dryas (YD) cold event, several stomatal proxy-based pCO2 records have shown a sharp increase in atmospheric CO2 concentration (pCO2) of between ca 50 and 100 ppm, followed by a rapid decrease of similar or even larger magnitude. Here we compare one of these records, a high-resolution pCO2 record from southern Sweden, with the IntCal13 record of radiocarbon (Δ14C). The two records show broadly synchronous fluctuations at the YD onset. Specifically, the IntCal13 record documents decreasing Δ14C just before the YD onset when pCO2 peaks, consistent with a source of “old” CO2 from the deep ocean. We propose that this fluctuation occurred due to a major ocean flushing event. The cause of the flushing event remains speculative but could be related to the hypothesis of the glacial ocean as a thermobaric capacitor. We confirm that the earth system can produce such large multi-decadal timescale fluctuations in pCO2 through simulating an artificial ocean flushing event with the GENIE Earth System Model. We suggest that sharp transitions of pCO2 may have remained undetected so far in ice cores due to inter-firn gas exchange and time-averaging. The stomatal proxy record is a powerful complement to the ice core records for the study of rapid climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tree ring Delta C-14 data (Reimer et al., 2004; McCormac et al., 2004) indicate that atmospheric Delta C-14 varied on multi-decadal to centennial timescales, in both hemispheres, over the period between AD 950 and 1830. The Northern and Southern Hemispheric Delta C-14 records display similar variability, but from the data alone is it not clear whether these variations are driven by the production of C-14 in the stratosphere (Stuiver and Quay, 1980) or by perturbations to exchanges between carbon reservoirs (Siegenthaler et al., 1980). As the sea-air flux of (CO2)-C-14 has a clear maximum in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the interhemispheric gradient. In this study, model simulations are used to show that Southern Ocean winds are likely a main driver of the observed variability in the interhemispheric gradient over AD 950-1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980-2004). This interpretation also implies that there may have been a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds at the Medieval Climate Anomaly to Little Ice Age transition remain unknown. Our process-focused suite of perturbation experiments with models raises the possibility that the current generation of coupled climate and earth system models may underestimate the natural background multi-decadal- to centennial-timescale variations in the winds over the Southern Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental values for the solubility of carbon dioxide and hydrogen in three room temperature ionic liquids based on the same anion- (bistrifluoromethylsulfonyl)imide [Ntf2]-and three different cations-1-butyl-3-methylimidazolium, [C4mim], 1-ethyl-3- methylimidazolium, [C2mim] and trimethyl-butylammonium, [N 4111]-are reported between 283 and 343 K and close to atmospheric pressure. Carbon dioxide, with a mole-fraction solubility of the order of 10-2, is two orders of magnitude more soluble than hydrogen. The solubility of CO2 is very similar in the three ionic liquids although slightly lower in the presence of the [C2mim] cation. In the case of H2, noticeable differences were observed with larger mole fraction solubilities in the presence of [N4111] followed by [C 4mim]. All of the mole-fraction solubilities decrease with increasing temperature. From the variation of Henry's law constants with temperature, the thermodynamic functions of solvation were calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations, is always better than ±1%. © Springer Science+Business Media, LLC 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new stomatal proxy-based record of CO2 concentrations ([CO2]), based on Betula nana (dwarf birch) leaves from the Hässeldala Port sedimentary sequence in south-eastern Sweden, is presented. The record is of high chronological resolution and spans most of Greenland Interstadial 1 (GI-1a to 1c, Allerød pollen zone), Greenland Stadial 1 (GS-1, Younger Dryas pollen zone) and the very beginning of the Holocene (Preboreal pollen zone). The record clearly demonstrates that i) [CO2] were significantly higher than usually reported for the Last Termination and ii) the overall pattern of CO2 evolution through the studied time period is fairly dynamic, with significant abrupt fluctuations in [CO2] when the climate moved from interstadial to stadial state and vice versa. A new loss-on-ignition chemical record (used here as a proxy for temperature) lends independent support to the Hässeldala Port [CO2] record. The large-amplitude fluctuations around the climate change transitions may indicate unstable climates and that " tipping-point" situations were involved in Last Termination climate evolution. The scenario presented here is in contrast to [CO2] records reconstructed from air bubbles trapped in ice, which indicate lower concentrations and a gradual, linear increase of [CO2] through time. The prevalent explanation for the main climate forcer during the Last Termination being ocean circulation patterns needs to re-examined, and a larger role for atmospheric [CO2] considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solubility of carbon dioxide in five tetraalkylphosphonium superbase ionic liquids, namely the trihexyltetradecylphoshonium phenoxide, trihexyltetradecylphoshonium benzotriazolide, trihexyltetradecylphoshonium benzimidazolide, trihexyltetradecylphoshonium 1,2,3-triazolide, and trihexyltetradecylphoshonium 1,2,4-triazolide was studied experimentally under dry and wet conditions at 22 A degrees C and at atmospheric pressure, using a gravimetric saturation technique. The effects of anion structure and of the presence or absence of water in the solution on the carbon dioxide solubility were then deduced from the data. H-1 and C-13-NMR spectroscopy and ab initio calculations were also conducted to probe the interactions in these solutions, as carbon dioxide and water can compete in the ionic liquid structure during the absorption process. Additionally, the viscosity of selected superbase ionic liquids was measured under dry and wet conditions, in the presence or absence of CO2, to evaluate their practical application in carbon dioxide capture processes. Finally, the recyclability of the trihexyltetradecylphoshonium 1,2,4-triazolide under dry and wet conditions was determined to probe the ability of selected solvents to solubilize chemically a high concentration of carbon dioxide and then release it in a low energy demand process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalytic oxidation reaction monitoring has been performed for the first time with a trace gas carbon dioxide analyser based on a continuous wave (cw), thermoelectrically cooled (TEC), distributed feedback (DFB) quantum cascade laser (QCL) operating at around 2307 cm-1. The reaction kinetics for carbon monoxide oxidation over a platinum catalyst supported on yttria-stabilised zirconia were followed by the QCL CO2 analyser and showed that it is a powerful new tool for measuring low reaction rates associated with low surface area model catalysts operating at atmospheric pressures. A detection limit was determined of 40 ppb (1 standard deviation) for a 0.1 s average and a residual absorption standard deviation of 1.9×10-4. © 2012 Springer-Verlag.